mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-06 08:53:40 +01:00
81053b7fcb
- Align DLLEXPORT in definitions and declations. There is still a few cases left, where the declation in the compiler's complex.h disagrees with the implementation here. For now we can't do anything about that, but maybe should be revisited in the future. - Fix the syntax on an .ascii directive that gcc accepted mistakingly, but clang does not.
120 lines
3.7 KiB
C
120 lines
3.7 KiB
C
/* From: @(#)k_tan.c 1.5 04/04/22 SMI */
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
|
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include "cdefs-compat.h"
|
|
//__FBSDID("$FreeBSD: src/lib/msun/ld128/k_tanl.c,v 1.1 2008/02/17 07:32:31 das Exp $");
|
|
|
|
/*
|
|
* ld128 version of k_tan.c. See ../src/k_tan.c for most comments.
|
|
*/
|
|
|
|
#include <openlibm_math.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
/*
|
|
* Domain [-0.67434, 0.67434], range ~[-3.37e-36, 1.982e-37]
|
|
* |tan(x)/x - t(x)| < 2**-117.8 (XXX should be ~1e-37)
|
|
*
|
|
* See ../ld80/k_cosl.c for more details about the polynomial.
|
|
*/
|
|
static const long double
|
|
T3 = 0x1.5555555555555555555555555553p-2L,
|
|
T5 = 0x1.1111111111111111111111111eb5p-3L,
|
|
T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
|
|
T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
|
|
T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
|
|
T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
|
|
T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
|
|
T17 = 0x1.355824803674477dfcf726649efep-11L,
|
|
T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
|
|
T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
|
|
T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
|
|
T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
|
|
T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
|
|
T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
|
|
T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
|
|
T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
|
|
T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
|
|
T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
|
|
pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
|
|
pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
|
|
|
|
static const double
|
|
T39 = 0.000000028443389121318352, /* 0x1e8a7592977938.0p-78 */
|
|
T41 = 0.000000011981013102001973, /* 0x19baa1b1223219.0p-79 */
|
|
T43 = 0.0000000038303578044958070, /* 0x107385dfb24529.0p-80 */
|
|
T45 = 0.0000000034664378216909893, /* 0x1dc6c702a05262.0p-81 */
|
|
T47 = -0.0000000015090641701997785, /* -0x19ecef3569ebb6.0p-82 */
|
|
T49 = 0.0000000029449552300483952, /* 0x194c0668da786a.0p-81 */
|
|
T51 = -0.0000000022006995706097711, /* -0x12e763b8845268.0p-81 */
|
|
T53 = 0.0000000015468200913196612, /* 0x1a92fc98c29554.0p-82 */
|
|
T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
|
|
T57 = 1.4912469681508012e-10; /* 0x147edbdba6f43a.0p-85 */
|
|
|
|
long double
|
|
__kernel_tanl(long double x, long double y, int iy) {
|
|
long double z, r, v, w, s;
|
|
long double osign;
|
|
int i;
|
|
|
|
iy = (iy == 1 ? -1 : 1); /* XXX recover original interface */
|
|
osign = (x >= 0 ? 1.0 : -1.0); /* XXX slow, probably wrong for -0 */
|
|
if (fabsl(x) >= 0.67434) {
|
|
if (x < 0) {
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
z = pio4 - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
i = 1;
|
|
} else
|
|
i = 0;
|
|
z = x * x;
|
|
w = z * z;
|
|
r = T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 +
|
|
w * (T25 + w * (T29 + w * (T33 +
|
|
w * (T37 + w * (T41 + w * (T45 + w * (T49 + w * (T53 +
|
|
w * T57))))))))))));
|
|
v = z * (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 +
|
|
w * (T27 + w * (T31 + w * (T35 +
|
|
w * (T39 + w * (T43 + w * (T47 + w * (T51 + w * T55))))))))))));
|
|
s = z * x;
|
|
r = y + z * (s * (r + v) + y);
|
|
r += T3 * s;
|
|
w = x + r;
|
|
if (i == 1) {
|
|
v = (long double) iy;
|
|
return osign *
|
|
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else {
|
|
/*
|
|
* if allow error up to 2 ulp, simply return
|
|
* -1.0 / (x+r) here
|
|
*/
|
|
/* compute -1.0 / (x+r) accurately */
|
|
long double a, t;
|
|
z = w;
|
|
z = z + 0x1p32 - 0x1p32;
|
|
v = r - (z - x); /* z+v = r+x */
|
|
t = a = -1.0 / w; /* a = -1.0/w */
|
|
t = t + 0x1p32 - 0x1p32;
|
|
s = 1.0 + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|