mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 14:33:38 +01:00
73 lines
1.9 KiB
C
73 lines
1.9 KiB
C
/* s_cbrtf.c -- float version of s_cbrt.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
* Debugged and optimized by Bruce D. Evans.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include "cdefs-compat.h"
|
|
//__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrtf.c,v 1.18 2008/02/22 02:30:35 das Exp $");
|
|
|
|
#include "openlibm.h"
|
|
#include "math_private.h"
|
|
|
|
/* cbrtf(x)
|
|
* Return cube root of x
|
|
*/
|
|
static const unsigned
|
|
B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
|
B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
|
|
|
|
float
|
|
cbrtf(float x)
|
|
{
|
|
double r,T;
|
|
float t;
|
|
int32_t hx;
|
|
u_int32_t sign;
|
|
u_int32_t high;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
sign=hx&0x80000000; /* sign= sign(x) */
|
|
hx ^=sign;
|
|
if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
|
|
|
|
/* rough cbrt to 5 bits */
|
|
if(hx<0x00800000) { /* zero or subnormal? */
|
|
if(hx==0)
|
|
return(x); /* cbrt(+-0) is itself */
|
|
SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
|
|
t*=x;
|
|
GET_FLOAT_WORD(high,t);
|
|
SET_FLOAT_WORD(t,sign|((high&0x7fffffff)/3+B2));
|
|
} else
|
|
SET_FLOAT_WORD(t,sign|(hx/3+B1));
|
|
|
|
/*
|
|
* First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
|
|
* double precision so that its terms can be arranged for efficiency
|
|
* without causing overflow or underflow.
|
|
*/
|
|
T=t;
|
|
r=T*T*T;
|
|
T=T*((double)x+x+r)/(x+r+r);
|
|
|
|
/*
|
|
* Second step Newton iteration to 47 bits. In double precision for
|
|
* efficiency and accuracy.
|
|
*/
|
|
r=T*T*T;
|
|
T=T*((double)x+x+r)/(x+r+r);
|
|
|
|
/* rounding to 24 bits is perfect in round-to-nearest mode */
|
|
return(T);
|
|
}
|