mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 14:33:38 +01:00
7e5585aaca
This is a bit more consistent with the naming of the other header files (openlibm_complex.h and openlibm_fenv.h). Re-add an openlibm.h header that includes all of the public headers as a shorthand. Fix up all of the source files to include <openlibm_math.h> instead of <openlibm.h>. While there, fix ordering of the includes.
57 lines
1.5 KiB
C
57 lines
1.5 KiB
C
/* @(#)e_acosh.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* acoshl(x)
|
|
* Method :
|
|
* Based on
|
|
* acoshl(x) = logl [ x + sqrtl(x*x-1) ]
|
|
* we have
|
|
* acoshl(x) := logl(x)+ln2, if x is large; else
|
|
* acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
|
|
* acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
|
|
*
|
|
* Special cases:
|
|
* acoshl(x) is NaN with signal if x<1.
|
|
* acoshl(NaN) is NaN without signal.
|
|
*/
|
|
|
|
#include <openlibm_math.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
static const long double
|
|
one = 1.0,
|
|
ln2 = 6.931471805599453094287e-01L; /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */
|
|
|
|
long double
|
|
acoshl(long double x)
|
|
{
|
|
long double t;
|
|
u_int32_t se,i0,i1;
|
|
GET_LDOUBLE_WORDS(se,i0,i1,x);
|
|
if(se<0x3fff || se & 0x8000) { /* x < 1 */
|
|
return (x-x)/(x-x);
|
|
} else if(se >=0x401d) { /* x > 2**30 */
|
|
if(se >=0x7fff) { /* x is inf of NaN */
|
|
return x+x;
|
|
} else
|
|
return logl(x)+ln2; /* acoshl(huge)=logl(2x) */
|
|
} else if(((se-0x3fff)|i0|i1)==0) {
|
|
return 0.0; /* acosh(1) = 0 */
|
|
} else if (se > 0x4000) { /* 2**28 > x > 2 */
|
|
t=x*x;
|
|
return logl(2.0*x-one/(x+sqrtl(t-one)));
|
|
} else { /* 1<x<2 */
|
|
t = x-one;
|
|
return log1pl(t+sqrtl(2.0*t+t*t));
|
|
}
|
|
}
|