mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2024-12-28 20:43:41 +01:00
7e5585aaca
This is a bit more consistent with the naming of the other header files (openlibm_complex.h and openlibm_fenv.h). Re-add an openlibm.h header that includes all of the public headers as a shorthand. Fix up all of the source files to include <openlibm_math.h> instead of <openlibm.h>. While there, fix ordering of the includes.
69 lines
1.7 KiB
C
69 lines
1.7 KiB
C
/* @(#)s_asinh.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* asinhl(x)
|
|
* Method :
|
|
* Based on
|
|
* asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ]
|
|
* we have
|
|
* asinhl(x) := x if 1+x*x=1,
|
|
* := signl(x)*(logl(x)+ln2)) for large |x|, else
|
|
* := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else
|
|
* := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2)))
|
|
*/
|
|
|
|
#include <openlibm_math.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
static const long double
|
|
one = 1.0L,
|
|
ln2 = 6.931471805599453094172321214581765681e-1L,
|
|
huge = 1.0e+4900L;
|
|
|
|
long double
|
|
asinhl(long double x)
|
|
{
|
|
long double t, w;
|
|
int32_t ix, sign;
|
|
ieee_quad_shape_type u;
|
|
|
|
u.value = x;
|
|
sign = u.parts32.mswhi;
|
|
ix = sign & 0x7fffffff;
|
|
if (ix == 0x7fff0000)
|
|
return x + x; /* x is inf or NaN */
|
|
if (ix < 0x3fc70000)
|
|
{ /* |x| < 2^ -56 */
|
|
if (huge + x > one)
|
|
return x; /* return x inexact except 0 */
|
|
}
|
|
u.parts32.mswhi = ix;
|
|
if (ix > 0x40350000)
|
|
{ /* |x| > 2 ^ 54 */
|
|
w = logl (u.value) + ln2;
|
|
}
|
|
else if (ix >0x40000000)
|
|
{ /* 2^ 54 > |x| > 2.0 */
|
|
t = u.value;
|
|
w = logl (2.0 * t + one / (sqrtl (x * x + one) + t));
|
|
}
|
|
else
|
|
{ /* 2.0 > |x| > 2 ^ -56 */
|
|
t = x * x;
|
|
w = log1pl (u.value + t / (one + sqrtl (one + t)));
|
|
}
|
|
if (sign & 0x80000000)
|
|
return -w;
|
|
else
|
|
return w;
|
|
}
|