OpenLibm/ld80/e_hypotl.c
Viral B. Shah 9ecf223fc1 Get the ld80 routines from OpenBSD to build on mac and linux.
Bump version number and SO major version, since we have
introduced new long double APIs.
2014-12-04 23:56:11 +05:30

122 lines
3.2 KiB
C

/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* hypotl(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* yy1= y with lower 32 bits chopped, y2 = y-yy1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include <openlibm.h>
#include "math_private.h"
long double
hypotl(long double x, long double y)
{
long double a,b,t1,t2,yy1,y2,w;
u_int32_t j,k,ea,eb;
GET_LDOUBLE_EXP(ea,x);
ea &= 0x7fff;
GET_LDOUBLE_EXP(eb,y);
eb &= 0x7fff;
if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}
SET_LDOUBLE_EXP(a,ea); /* a <- |a| */
SET_LDOUBLE_EXP(b,eb); /* b <- |b| */
if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */
k=0;
if(ea > 0x5f3f) { /* a>2**8000 */
if(ea == 0x7fff) { /* Inf or NaN */
u_int32_t es,high,low;
w = a+b; /* for sNaN */
GET_LDOUBLE_WORDS(es,high,low,a);
if(((high&0x7fffffff)|low)==0) w = a;
GET_LDOUBLE_WORDS(es,high,low,b);
if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-9600 */
ea -= 0x2580; eb -= 0x2580; k += 9600;
SET_LDOUBLE_EXP(a,ea);
SET_LDOUBLE_EXP(b,eb);
}
if(eb < 0x20bf) { /* b < 2**-8000 */
if(eb == 0) { /* subnormal b or 0 */
u_int32_t es,high,low;
GET_LDOUBLE_WORDS(es,high,low,b);
if((high|low)==0) return a;
SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0); /* t1=2^16382 */
b *= t1;
a *= t1;
k -= 16382;
} else { /* scale a and b by 2^9600 */
ea += 0x2580; /* a *= 2^9600 */
eb += 0x2580; /* b *= 2^9600 */
k -= 9600;
SET_LDOUBLE_EXP(a,ea);
SET_LDOUBLE_EXP(b,eb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
u_int32_t high;
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea,high,0);
t2 = a-t1;
w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
u_int32_t high;
GET_LDOUBLE_MSW(high,b);
a = a+a;
SET_LDOUBLE_WORDS(yy1,eb,high,0);
y2 = b - yy1;
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea+1,high,0);
t2 = a - t1;
w = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
u_int32_t es;
t1 = 1.0;
GET_LDOUBLE_EXP(es,t1);
SET_LDOUBLE_EXP(t1,es+k);
return t1*w;
} else return w;
}