mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-16 01:32:30 +01:00
7e5585aaca
This is a bit more consistent with the naming of the other header files (openlibm_complex.h and openlibm_fenv.h). Re-add an openlibm.h header that includes all of the public headers as a shorthand. Fix up all of the source files to include <openlibm_math.h> instead of <openlibm.h>. While there, fix ordering of the includes.
168 lines
4.5 KiB
C
168 lines
4.5 KiB
C
/* @(#)e_fmod.c 1.3 95/01/18 */
|
|
/*-
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <machine/ieee.h>
|
|
|
|
#include <float.h>
|
|
#include <openlibm_math.h>
|
|
#include <stdint.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
#define BIAS (LDBL_MAX_EXP - 1)
|
|
|
|
/*
|
|
* These macros add and remove an explicit integer bit in front of the
|
|
* fractional mantissa, if the architecture doesn't have such a bit by
|
|
* default already.
|
|
*/
|
|
#ifdef LDBL_IMPLICIT_NBIT
|
|
#define LDBL_NBIT 0
|
|
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
|
|
#define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS)
|
|
#else
|
|
#define LDBL_NBIT 0x80000000
|
|
#define SET_NBIT(hx) (hx)
|
|
#define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS - 1)
|
|
#endif
|
|
|
|
#define MANL_SHIFT (EXT_FRACLMBITS + EXT_FRACLBITS - 1)
|
|
|
|
static const long double Zero[] = {0.0L, -0.0L};
|
|
|
|
/*
|
|
* Return the IEEE remainder and set *quo to the last n bits of the
|
|
* quotient, rounded to the nearest integer. We choose n=31 because
|
|
* we wind up computing all the integer bits of the quotient anyway as
|
|
* a side-effect of computing the remainder by the shift and subtract
|
|
* method. In practice, this is far more bits than are needed to use
|
|
* remquo in reduction algorithms.
|
|
*
|
|
* Assumptions:
|
|
* - The low part of the mantissa fits in a manl_t exactly.
|
|
* - The high part of the mantissa fits in an int64_t with enough room
|
|
* for an explicit integer bit in front of the fractional bits.
|
|
*/
|
|
long double
|
|
remquol(long double x, long double y, int *quo)
|
|
{
|
|
int64_t hx,hz,hy,_hx;
|
|
uint64_t lx,ly,lz;
|
|
uint64_t sx,sxy;
|
|
int ix,iy,n,q;
|
|
|
|
GET_LDOUBLE_WORDS64(hx,lx,x);
|
|
GET_LDOUBLE_WORDS64(hy,ly,y);
|
|
sx = (hx>>48)&0x8000;
|
|
sxy = sx ^ ((hy>>48)&0x8000);
|
|
hx &= 0x7fffffffffffffffLL; /* |x| */
|
|
hy &= 0x7fffffffffffffffLL; /* |y| */
|
|
SET_LDOUBLE_WORDS64(x,hx,lx);
|
|
SET_LDOUBLE_WORDS64(y,hy,ly);
|
|
|
|
/* purge off exception values */
|
|
if((hy|ly)==0 || /* y=0 */
|
|
((hx>>48) == BIAS + LDBL_MAX_EXP) || /* or x not finite */
|
|
((hy>>48) == BIAS + LDBL_MAX_EXP &&
|
|
(((hy&0x0000ffffffffffffLL)&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */
|
|
return (x*y)/(x*y);
|
|
if((hx>>48)<=(hy>>48)) {
|
|
if(((hx>>48)<(hy>>48)) ||
|
|
((hx&0x0000ffffffffffffLL)<=(hy&0x0000ffffffffffffLL) &&
|
|
((hx&0x0000ffffffffffffLL)<(hy&0x0000ffffffffffffLL) ||
|
|
lx<ly))) {
|
|
q = 0;
|
|
goto fixup; /* |x|<|y| return x or x-y */
|
|
}
|
|
if((hx&0x0000ffffffffffffLL)==(hy&0x0000ffffffffffffLL) &&
|
|
lx==ly) {
|
|
*quo = 1;
|
|
return Zero[sx!=0]; /* |x|=|y| return x*0*/
|
|
}
|
|
}
|
|
|
|
/* determine ix = ilogb(x) */
|
|
if((hx>>48) == 0) { /* subnormal x */
|
|
x *= 0x1.0p512;
|
|
GET_LDOUBLE_WORDS64(hx,lx,x);
|
|
ix = (hx>>48) - (BIAS + 512);
|
|
} else {
|
|
ix = (hx>>48) - BIAS;
|
|
}
|
|
|
|
/* determine iy = ilogb(y) */
|
|
if((hy>>48) == 0) { /* subnormal y */
|
|
y *= 0x1.0p512;
|
|
GET_LDOUBLE_WORDS64(hy,ly,y);
|
|
iy = (hy>>48) - (BIAS + 512);
|
|
} else {
|
|
iy = (hy>>48) - BIAS;
|
|
}
|
|
|
|
/* set up {hx,lx}, {hy,ly} and align y to x */
|
|
_hx = SET_NBIT(hx) & 0x0000ffffffffffffLL;
|
|
hy = SET_NBIT(hy);
|
|
|
|
/* fix point fmod */
|
|
n = ix - iy;
|
|
q = 0;
|
|
|
|
while(n--) {
|
|
hz=_hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
|
if(hz<0){_hx = _hx+_hx+(lx>>MANL_SHIFT); lx = lx+lx;}
|
|
else {_hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;}
|
|
q <<= 1;
|
|
}
|
|
hz=_hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
|
if(hz>=0) {_hx=hz;lx=lz;q++;}
|
|
|
|
/* convert back to floating value and restore the sign */
|
|
if((_hx|lx)==0) { /* return sign(x)*0 */
|
|
*quo = (sxy ? -q : q);
|
|
return Zero[sx!=0];
|
|
}
|
|
while(_hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
|
|
_hx = _hx+_hx+(lx>>MANL_SHIFT); lx = lx+lx;
|
|
iy -= 1;
|
|
}
|
|
hx = (hx&0xffff000000000000LL) | (_hx&0x0000ffffffffffffLL);
|
|
if (iy < LDBL_MIN_EXP) {
|
|
hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS + 512)<<48;
|
|
SET_LDOUBLE_WORDS64(x,hx,lx);
|
|
x *= 0x1p-512;
|
|
GET_LDOUBLE_WORDS64(hx,lx,x);
|
|
} else {
|
|
hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS)<<48;
|
|
}
|
|
hx &= 0x7fffffffffffffffLL;
|
|
SET_LDOUBLE_WORDS64(x,hx,lx);
|
|
fixup:
|
|
y = fabsl(y);
|
|
if (y < LDBL_MIN * 2) {
|
|
if (x+x>y || (x+x==y && (q & 1))) {
|
|
q++;
|
|
x-=y;
|
|
}
|
|
} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
|
|
q++;
|
|
x-=y;
|
|
}
|
|
|
|
GET_LDOUBLE_MSW64(hx,x);
|
|
hx ^= sx;
|
|
SET_LDOUBLE_MSW64(x,hx);
|
|
|
|
q &= 0x7fffffff;
|
|
*quo = (sxy ? -q : q);
|
|
return x;
|
|
}
|