OpenLibm/ld80/e_logl.c
Ed Schouten 7e5585aaca Rename openlibm.h to openlibm_math.h.
This is a bit more consistent with the naming of the other header files
(openlibm_complex.h and openlibm_fenv.h). Re-add an openlibm.h header
that includes all of the public headers as a shorthand.

Fix up all of the source files to include <openlibm_math.h> instead of
<openlibm.h>. While there, fix ordering of the includes.
2015-01-11 23:37:01 +01:00

190 lines
4.4 KiB
C

/* $OpenBSD: e_logl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* logl.c
*
* Natural logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, logl();
*
* y = logl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts. If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
* log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting z = 2(x-1)/x+1),
*
* log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
* IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity: x = 0; returns -INFINITY
* log domain: x < 0; returns NAN
*/
#include <openlibm_math.h>
#include "math_private.h"
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 2.32e-20
*/
static long double P[] = {
4.5270000862445199635215E-5L,
4.9854102823193375972212E-1L,
6.5787325942061044846969E0L,
2.9911919328553073277375E1L,
6.0949667980987787057556E1L,
5.7112963590585538103336E1L,
2.0039553499201281259648E1L,
};
static long double Q[] = {
/* 1.0000000000000000000000E0,*/
1.5062909083469192043167E1L,
8.3047565967967209469434E1L,
2.2176239823732856465394E2L,
3.0909872225312059774938E2L,
2.1642788614495947685003E2L,
6.0118660497603843919306E1L,
};
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
* where z = 2(x-1)/(x+1)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 6.16e-22
*/
static long double R[4] = {
1.9757429581415468984296E-3L,
-7.1990767473014147232598E-1L,
1.0777257190312272158094E1L,
-3.5717684488096787370998E1L,
};
static long double S[4] = {
/* 1.00000000000000000000E0L,*/
-2.6201045551331104417768E1L,
1.9361891836232102174846E2L,
-4.2861221385716144629696E2L,
};
static const long double C1 = 6.9314575195312500000000E-1L;
static const long double C2 = 1.4286068203094172321215E-6L;
#define SQRTH 0.70710678118654752440L
long double
logl(long double x)
{
long double y, z;
int e;
if( isnan(x) )
return(x);
if( x == INFINITY )
return(x);
/* Test for domain */
if( x <= 0.0L )
{
if( x == 0.0L )
return( -INFINITY );
else
return( NAN );
}
/* separate mantissa from exponent */
/* Note, frexp is used so that denormal numbers
* will be handled properly.
*/
x = frexpl( x, &e );
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
* where z = 2(x-1)/x+1)
*/
if( (e > 2) || (e < -2) )
{
if( x < SQRTH )
{ /* 2( 2x-1 )/( 2x+1 ) */
e -= 1;
z = x - 0.5L;
y = 0.5L * z + 0.5L;
}
else
{ /* 2 (x-1)/(x+1) */
z = x - 0.5L;
z -= 0.5L;
y = 0.5L * x + 0.5L;
}
x = z / y;
z = x*x;
z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
z = z + e * C2;
z = z + x;
z = z + e * C1;
return( z );
}
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
if( x < SQRTH )
{
e -= 1;
x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
}
else
{
x = x - 1.0L;
}
z = x*x;
y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) );
y = y + e * C2;
z = y - ldexpl( z, -1 ); /* y - 0.5 * z */
/* Note, the sum of above terms does not exceed x/4,
* so it contributes at most about 1/4 lsb to the error.
*/
z = z + x;
z = z + e * C1; /* This sum has an error of 1/2 lsb. */
return( z );
}