mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2024-12-28 04:23:41 +01:00
81053b7fcb
- Align DLLEXPORT in definitions and declations. There is still a few cases left, where the declation in the compiler's complex.h disagrees with the implementation here. For now we can't do anything about that, but maybe should be revisited in the future. - Fix the syntax on an .ascii directive that gcc accepted mistakingly, but clang does not.
125 lines
4.1 KiB
C
125 lines
4.1 KiB
C
/* From: @(#)k_tan.c 1.5 04/04/22 SMI */
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
|
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include "cdefs-compat.h"
|
|
//__FBSDID("$FreeBSD: src/lib/msun/ld80/k_tanl.c,v 1.3 2008/02/18 15:39:52 bde Exp $");
|
|
|
|
/*
|
|
* ld80 version of k_tan.c. See ../src/k_tan.c for most comments.
|
|
*/
|
|
|
|
#include <openlibm_math.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
/*
|
|
* Domain [-0.67434, 0.67434], range ~[-2.25e-22, 1.921e-22]
|
|
* |tan(x)/x - t(x)| < 2**-71.9
|
|
*
|
|
* See k_cosl.c for more details about the polynomial.
|
|
*/
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
/* Long double constants are slow on these arches, and broken on i386. */
|
|
static const volatile double
|
|
T3hi = 0.33333333333333331, /* 0x15555555555555.0p-54 */
|
|
T3lo = 1.8350121769317163e-17, /* 0x15280000000000.0p-108 */
|
|
T5hi = 0.13333333333333336, /* 0x11111111111112.0p-55 */
|
|
T5lo = 1.3051083651294260e-17, /* 0x1e180000000000.0p-109 */
|
|
T7hi = 0.053968253968250494, /* 0x1ba1ba1ba1b827.0p-57 */
|
|
T7lo = 3.1509625637859973e-18, /* 0x1d100000000000.0p-111 */
|
|
pio4_hi = 0.78539816339744828, /* 0x1921fb54442d18.0p-53 */
|
|
pio4_lo = 3.0628711372715500e-17, /* 0x11a80000000000.0p-107 */
|
|
pio4lo_hi = -1.2541394031670831e-20, /* -0x1d9cceba3f91f2.0p-119 */
|
|
pio4lo_lo = 6.1493048227390915e-37; /* 0x1a280000000000.0p-173 */
|
|
#define T3 ((long double)T3hi + T3lo)
|
|
#define T5 ((long double)T5hi + T5lo)
|
|
#define T7 ((long double)T7hi + T7lo)
|
|
#define pio4 ((long double)pio4_hi + pio4_lo)
|
|
#define pio4lo ((long double)pio4lo_hi + pio4lo_lo)
|
|
#else
|
|
static const long double
|
|
T3 = 0.333333333333333333180L, /* 0xaaaaaaaaaaaaaaa5.0p-65 */
|
|
T5 = 0.133333333333333372290L, /* 0x88888888888893c3.0p-66 */
|
|
T7 = 0.0539682539682504975744L, /* 0xdd0dd0dd0dc13ba2.0p-68 */
|
|
pio4 = 0.785398163397448309628L, /* 0xc90fdaa22168c235.0p-64 */
|
|
pio4lo = -1.25413940316708300586e-20L; /* -0xece675d1fc8f8cbb.0p-130 */
|
|
#endif
|
|
|
|
static const double
|
|
T9 = 0.021869488536312216, /* 0x1664f4882cc1c2.0p-58 */
|
|
T11 = 0.0088632355256619590, /* 0x1226e355c17612.0p-59 */
|
|
T13 = 0.0035921281113786528, /* 0x1d6d3d185d7ff8.0p-61 */
|
|
T15 = 0.0014558334756312418, /* 0x17da354aa3f96b.0p-62 */
|
|
T17 = 0.00059003538700862256, /* 0x13559358685b83.0p-63 */
|
|
T19 = 0.00023907843576635544, /* 0x1f56242026b5be.0p-65 */
|
|
T21 = 0.000097154625656538905, /* 0x1977efc26806f4.0p-66 */
|
|
T23 = 0.000038440165747303162, /* 0x14275a09b3ceac.0p-67 */
|
|
T25 = 0.000018082171885432524, /* 0x12f5e563e5487e.0p-68 */
|
|
T27 = 0.0000024196006108814377, /* 0x144c0d80cc6896.0p-71 */
|
|
T29 = 0.0000078293456938132840, /* 0x106b59141a6cb3.0p-69 */
|
|
T31 = -0.0000032609076735050182, /* -0x1b5abef3ba4b59.0p-71 */
|
|
T33 = 0.0000023261313142559411; /* 0x13835436c0c87f.0p-71 */
|
|
|
|
long double
|
|
__kernel_tanl(long double x, long double y, int iy) {
|
|
long double z, r, v, w, s;
|
|
long double osign;
|
|
int i;
|
|
|
|
iy = (iy == 1 ? -1 : 1); /* XXX recover original interface */
|
|
osign = (x >= 0 ? 1.0 : -1.0); /* XXX slow, probably wrong for -0 */
|
|
if (fabsl(x) >= 0.67434) {
|
|
if (x < 0) {
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
z = pio4 - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
i = 1;
|
|
} else
|
|
i = 0;
|
|
z = x * x;
|
|
w = z * z;
|
|
r = T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 +
|
|
w * (T25 + w * (T29 + w * T33))))));
|
|
v = z * (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 +
|
|
w * (T27 + w * T31))))));
|
|
s = z * x;
|
|
r = y + z * (s * (r + v) + y);
|
|
r += T3 * s;
|
|
w = x + r;
|
|
if (i == 1) {
|
|
v = (long double) iy;
|
|
return osign *
|
|
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else {
|
|
/*
|
|
* if allow error up to 2 ulp, simply return
|
|
* -1.0 / (x+r) here
|
|
*/
|
|
/* compute -1.0 / (x+r) accurately */
|
|
long double a, t;
|
|
z = w;
|
|
z = z + 0x1p32 - 0x1p32;
|
|
v = r - (z - x); /* z+v = r+x */
|
|
t = a = -1.0 / w; /* a = -1.0/w */
|
|
t = t + 0x1p32 - 0x1p32;
|
|
s = 1.0 + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|