mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-04-04 09:37:13 +02:00
OpenLibm uses the __weak_reference() macro for platforms where double and long double use the same layout. That way functions only need to be provided by the library once. The point is, in this specific case we want to use strong references; not weak references. Strong references can be used to give a symbol a second name. If you look at the resulting object file, you will have two symbols with the same offset and size. Weak references are different, in the sense that they are marked in such a way that they act as fallbacks. They are only used if an explicitly matching symbol is missing.
124 lines
4.2 KiB
C
124 lines
4.2 KiB
C
/* @(#)s_atan.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include "cdefs-compat.h"
|
|
//__FBSDID("$FreeBSD: src/lib/msun/src/s_atan.c,v 1.13 2011/02/10 07:37:50 das Exp $");
|
|
|
|
/* atan(x)
|
|
* Method
|
|
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
|
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
|
* is further reduced to one of the following intervals and the
|
|
* arctangent of t is evaluated by the corresponding formula:
|
|
*
|
|
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
|
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
|
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
|
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
|
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
#include <float.h>
|
|
#include <openlibm.h>
|
|
|
|
#include "math_private.h"
|
|
|
|
static const double atanhi[] = {
|
|
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
|
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
|
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
|
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
|
};
|
|
|
|
static const double atanlo[] = {
|
|
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
|
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
|
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
|
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
|
};
|
|
|
|
static const double aT[] = {
|
|
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
|
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
|
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
|
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
|
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
|
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
|
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
|
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
|
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
|
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
|
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
|
};
|
|
|
|
static const double
|
|
one = 1.0,
|
|
huge = 1.0e300;
|
|
|
|
DLLEXPORT double
|
|
atan(double x)
|
|
{
|
|
double w,s1,s2,z;
|
|
int32_t ix,hx,id;
|
|
|
|
GET_HIGH_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
|
u_int32_t low;
|
|
GET_LOW_WORD(low,x);
|
|
if(ix>0x7ff00000||
|
|
(ix==0x7ff00000&&(low!=0)))
|
|
return x+x; /* NaN */
|
|
if(hx>0) return atanhi[3]+*(volatile double *)&atanlo[3];
|
|
else return -atanhi[3]-*(volatile double *)&atanlo[3];
|
|
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
|
if (ix < 0x3e400000) { /* |x| < 2^-27 */
|
|
if(huge+x>one) return x; /* raise inexact */
|
|
}
|
|
id = -1;
|
|
} else {
|
|
x = fabs(x);
|
|
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
|
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
|
id = 0; x = (2.0*x-one)/(2.0+x);
|
|
} else { /* 11/16<=|x|< 19/16 */
|
|
id = 1; x = (x-one)/(x+one);
|
|
}
|
|
} else {
|
|
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
|
id = 2; x = (x-1.5)/(one+1.5*x);
|
|
} else { /* 2.4375 <= |x| < 2^66 */
|
|
id = 3; x = -1.0/x;
|
|
}
|
|
}}
|
|
/* end of argument reduction */
|
|
z = x*x;
|
|
w = z*z;
|
|
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
|
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
|
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
|
if (id<0) return x - x*(s1+s2);
|
|
else {
|
|
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
|
return (hx<0)? -z:z;
|
|
}
|
|
}
|
|
|
|
#if LDBL_MANT_DIG == 53
|
|
__strong_reference(atan, atanl);
|
|
#endif
|