OpenLibm/ld80/e_expl.c
Viral B. Shah 9ecf223fc1 Get the ld80 routines from OpenBSD to build on mac and linux.
Bump version number and SO major version, since we have
introduced new long double APIs.
2014-12-04 23:56:11 +05:30

131 lines
3.4 KiB
C

/* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* expl.c
*
* Exponential function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-10000 50000 1.12e-19 2.81e-20
*
*
* Error amplification in the exponential function can be
* a serious matter. The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < MINLOG 0.0
* exp overflow x > MAXLOG MAXNUM
*
*/
/* Exponential function */
#include <openlibm.h>
#include "math_private.h"
static long double P[3] = {
1.2617719307481059087798E-4L,
3.0299440770744196129956E-2L,
9.9999999999999999991025E-1L,
};
static long double Q[4] = {
3.0019850513866445504159E-6L,
2.5244834034968410419224E-3L,
2.2726554820815502876593E-1L,
2.0000000000000000000897E0L,
};
static const long double C1 = 6.9314575195312500000000E-1L;
static const long double C2 = 1.4286068203094172321215E-6L;
static const long double MAXLOGL = 1.1356523406294143949492E4L;
static const long double MINLOGL = -1.13994985314888605586758E4L;
static const long double LOG2EL = 1.4426950408889634073599E0L;
long double
expl(long double x)
{
long double px, xx;
int n;
if( isnan(x) )
return(x);
if( x > MAXLOGL)
return( INFINITY );
if( x < MINLOGL )
return(0.0L);
/* Express e**x = e**g 2**n
* = e**g e**( n loge(2) )
* = e**( g + n loge(2) )
*/
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
n = px;
x -= px * C1;
x -= px * C2;
/* rational approximation for exponential
* of the fractional part:
* e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*/
xx = x * x;
px = x * __polevll( xx, P, 2 );
x = px/( __polevll( xx, Q, 3 ) - px );
x = 1.0L + ldexpl( x, 1 );
x = ldexpl( x, n );
return(x);
}