OpenLibm/ld80/s_expm1l.c
Viral B. Shah 9ecf223fc1 Get the ld80 routines from OpenBSD to build on mac and linux.
Bump version number and SO major version, since we have
introduced new long double APIs.
2014-12-04 23:56:11 +05:30

138 lines
3.5 KiB
C

/* $OpenBSD: s_expm1l.c,v 1.2 2011/07/20 21:02:51 martynas Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* expm1l.c
*
* Exponential function, minus 1
* Long double precision
*
*
* SYNOPSIS:
*
* long double x, y, expm1l();
*
* y = expm1l( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power, minus 1.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20
*
* ERROR MESSAGES:
*
* message condition value returned
* expm1l overflow x > MAXLOG MAXNUM
*
*/
#include <openlibm.h>
static const long double MAXLOGL = 1.1356523406294143949492E4L;
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
-.5 ln 2 < x < .5 ln 2
Theoretical peak relative error = 3.4e-22 */
static const long double
P0 = -1.586135578666346600772998894928250240826E4L,
P1 = 2.642771505685952966904660652518429479531E3L,
P2 = -3.423199068835684263987132888286791620673E2L,
P3 = 1.800826371455042224581246202420972737840E1L,
P4 = -5.238523121205561042771939008061958820811E-1L,
Q0 = -9.516813471998079611319047060563358064497E4L,
Q1 = 3.964866271411091674556850458227710004570E4L,
Q2 = -7.207678383830091850230366618190187434796E3L,
Q3 = 7.206038318724600171970199625081491823079E2L,
Q4 = -4.002027679107076077238836622982900945173E1L,
/* Q5 = 1.000000000000000000000000000000000000000E0 */
/* C1 + C2 = ln 2 */
C1 = 6.93145751953125E-1L,
C2 = 1.428606820309417232121458176568075500134E-6L,
/* ln 2^-65 */
minarg = -4.5054566736396445112120088E1L;
static const long double huge = 0x1p10000L;
long double
expm1l(long double x)
{
long double px, qx, xx;
int k;
/* Overflow. */
if (x > MAXLOGL)
return (huge*huge); /* overflow */
if (x == 0.0)
return x;
/* Minimum value. */
if (x < minarg)
return -1.0L;
xx = C1 + C2;
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
px = floorl (0.5 + x / xx);
k = px;
/* remainder times ln 2 */
x -= px * C1;
x -= px * C2;
/* Approximate exp(remainder ln 2). */
px = (((( P4 * x
+ P3) * x
+ P2) * x
+ P1) * x
+ P0) * x;
qx = (((( x
+ Q4) * x
+ Q3) * x
+ Q2) * x
+ Q1) * x
+ Q0;
xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
We have qx = exp(remainder ln 2) - 1, so
exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
px = ldexpl(1.0L, k);
x = px * qx + (px - 1.0);
return x;
}