mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
220 lines
7.2 KiB
Fortran
220 lines
7.2 KiB
Fortran
*DECK CHER
|
|
SUBROUTINE CHER (UPLO, N, ALPHA, X, INCX, A, LDA)
|
|
C***BEGIN PROLOGUE CHER
|
|
C***PURPOSE Perform Hermitian rank 1 update of a complex Hermitian
|
|
C matrix.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B4
|
|
C***TYPE COMPLEX (SHER-S, DHER-D, CHER-C)
|
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J. J., (ANL)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S., (NAG)
|
|
C Hanson, R. J., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C CHER performs the hermitian rank 1 operation
|
|
C
|
|
C A := alpha*x*conjg( x') + A,
|
|
C
|
|
C where alpha is a real scalar, x is an n element vector and A is an
|
|
C n by n hermitian matrix.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C UPLO - CHARACTER*1.
|
|
C On entry, UPLO specifies whether the upper or lower
|
|
C triangular part of the array A is to be referenced as
|
|
C follows:
|
|
C
|
|
C UPLO = 'U' or 'u' Only the upper triangular part of A
|
|
C is to be referenced.
|
|
C
|
|
C UPLO = 'L' or 'l' Only the lower triangular part of A
|
|
C is to be referenced.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the order of the matrix A.
|
|
C N must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - REAL .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C X - COMPLEX array of dimension at least
|
|
C ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
C Before entry, the incremented array X must contain the n
|
|
C element vector x.
|
|
C Unchanged on exit.
|
|
C
|
|
C INCX - INTEGER.
|
|
C On entry, INCX specifies the increment for the elements of
|
|
C X. INCX must not be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C A - COMPLEX array of DIMENSION ( LDA, n ).
|
|
C Before entry with UPLO = 'U' or 'u', the leading n by n
|
|
C upper triangular part of the array A must contain the upper
|
|
C triangular part of the hermitian matrix and the strictly
|
|
C lower triangular part of A is not referenced. On exit, the
|
|
C upper triangular part of the array A is overwritten by the
|
|
C upper triangular part of the updated matrix.
|
|
C Before entry with UPLO = 'L' or 'l', the leading n by n
|
|
C lower triangular part of the array A must contain the lower
|
|
C triangular part of the hermitian matrix and the strictly
|
|
C upper triangular part of A is not referenced. On exit, the
|
|
C lower triangular part of the array A is overwritten by the
|
|
C lower triangular part of the updated matrix.
|
|
C Note that the imaginary parts of the diagonal elements need
|
|
C not be set, they are assumed to be zero, and on exit they
|
|
C are set to zero.
|
|
C
|
|
C LDA - INTEGER.
|
|
C On entry, LDA specifies the first dimension of A as declared
|
|
C in the calling (sub) program. LDA must be at least
|
|
C max( 1, n ).
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
|
C Hanson, R. J. An extended set of Fortran basic linear
|
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
|
C pp. 1-17, March 1988.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 861022 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE CHER
|
|
C .. Scalar Arguments ..
|
|
REAL ALPHA
|
|
INTEGER INCX, LDA, N
|
|
CHARACTER*1 UPLO
|
|
C .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), X( * )
|
|
C .. Parameters ..
|
|
COMPLEX ZERO
|
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
C .. Local Scalars ..
|
|
COMPLEX TEMP
|
|
INTEGER I, INFO, IX, J, JX, KX
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC CONJG, MAX, REAL
|
|
C***FIRST EXECUTABLE STATEMENT CHER
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
INFO = 0
|
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
|
INFO = 1
|
|
ELSE IF( N.LT.0 )THEN
|
|
INFO = 2
|
|
ELSE IF( INCX.EQ.0 )THEN
|
|
INFO = 5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
|
|
INFO = 7
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'CHER ', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( N.EQ.0 ).OR.( ALPHA.EQ.REAL( ZERO ) ) )
|
|
$ RETURN
|
|
C
|
|
C Set the start point in X if the increment is not unity.
|
|
C
|
|
IF( INCX.LE.0 )THEN
|
|
KX = 1 - ( N - 1 )*INCX
|
|
ELSE IF( INCX.NE.1 )THEN
|
|
KX = 1
|
|
END IF
|
|
C
|
|
C Start the operations. In this version the elements of A are
|
|
C accessed sequentially with one pass through the triangular part
|
|
C of A.
|
|
C
|
|
IF( LSAME( UPLO, 'U' ) )THEN
|
|
C
|
|
C Form A when A is stored in upper triangle.
|
|
C
|
|
IF( INCX.EQ.1 )THEN
|
|
DO 20, J = 1, N
|
|
IF( X( J ).NE.ZERO )THEN
|
|
TEMP = ALPHA*CONJG( X( J ) )
|
|
DO 10, I = 1, J - 1
|
|
A( I, J ) = A( I, J ) + X( I )*TEMP
|
|
10 CONTINUE
|
|
A( J, J ) = REAL( A( J, J ) ) + REAL( X( J )*TEMP )
|
|
ELSE
|
|
A( J, J ) = REAL( A( J, J ) )
|
|
END IF
|
|
20 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
DO 40, J = 1, N
|
|
IF( X( JX ).NE.ZERO )THEN
|
|
TEMP = ALPHA*CONJG( X( JX ) )
|
|
IX = KX
|
|
DO 30, I = 1, J - 1
|
|
A( I, J ) = A( I, J ) + X( IX )*TEMP
|
|
IX = IX + INCX
|
|
30 CONTINUE
|
|
A( J, J ) = REAL( A( J, J ) ) + REAL( X( JX )*TEMP )
|
|
ELSE
|
|
A( J, J ) = REAL( A( J, J ) )
|
|
END IF
|
|
JX = JX + INCX
|
|
40 CONTINUE
|
|
END IF
|
|
ELSE
|
|
C
|
|
C Form A when A is stored in lower triangle.
|
|
C
|
|
IF( INCX.EQ.1 )THEN
|
|
DO 60, J = 1, N
|
|
IF( X( J ).NE.ZERO )THEN
|
|
TEMP = ALPHA*CONJG( X( J ) )
|
|
A( J, J ) = REAL( A( J, J ) ) + REAL( TEMP*X( J ) )
|
|
DO 50, I = J + 1, N
|
|
A( I, J ) = A( I, J ) + X( I )*TEMP
|
|
50 CONTINUE
|
|
ELSE
|
|
A( J, J ) = REAL( A( J, J ) )
|
|
END IF
|
|
60 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
DO 80, J = 1, N
|
|
IF( X( JX ).NE.ZERO )THEN
|
|
TEMP = ALPHA*CONJG( X( JX ) )
|
|
A( J, J ) = REAL( A( J, J ) ) + REAL( TEMP*X( JX ) )
|
|
IX = JX
|
|
DO 70, I = J + 1, N
|
|
IX = IX + INCX
|
|
A( I, J ) = A( I, J ) + X( IX )*TEMP
|
|
70 CONTINUE
|
|
ELSE
|
|
A( J, J ) = REAL( A( J, J ) )
|
|
END IF
|
|
JX = JX + INCX
|
|
80 CONTINUE
|
|
END IF
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of CHER .
|
|
C
|
|
END
|