mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
370 lines
14 KiB
Fortran
370 lines
14 KiB
Fortran
*DECK CHER2K
|
|
SUBROUTINE CHER2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
|
|
$ C, LDC)
|
|
C***BEGIN PROLOGUE CHER2K
|
|
C***PURPOSE Perform Hermitian rank 2k update of a complex.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B6
|
|
C***TYPE COMPLEX (SHER2-S, DHER2-D, CHER2-C, CHER2K-C)
|
|
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J., (ANL)
|
|
C Duff, I., (AERE)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S. (NAG)
|
|
C***DESCRIPTION
|
|
C
|
|
C CHER2K performs one of the hermitian rank 2k operations
|
|
C
|
|
C C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C,
|
|
C
|
|
C or
|
|
C
|
|
C C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C,
|
|
C
|
|
C where alpha and beta are scalars with beta real, C is an n by n
|
|
C hermitian matrix and A and B are n by k matrices in the first case
|
|
C and k by n matrices in the second case.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C UPLO - CHARACTER*1.
|
|
C On entry, UPLO specifies whether the upper or lower
|
|
C triangular part of the array C is to be referenced as
|
|
C follows:
|
|
C
|
|
C UPLO = 'U' or 'u' Only the upper triangular part of C
|
|
C is to be referenced.
|
|
C
|
|
C UPLO = 'L' or 'l' Only the lower triangular part of C
|
|
C is to be referenced.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C TRANS - CHARACTER*1.
|
|
C On entry, TRANS specifies the operation to be performed as
|
|
C follows:
|
|
C
|
|
C TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) +
|
|
C conjg( alpha )*B*conjg( A' ) +
|
|
C beta*C.
|
|
C
|
|
C TRANS = 'C' or 'c' C := alpha*conjg( A' )*B +
|
|
C conjg( alpha )*conjg( B' )*A +
|
|
C beta*C.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the order of the matrix C. N must be
|
|
C at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C K - INTEGER.
|
|
C On entry with TRANS = 'N' or 'n', K specifies the number
|
|
C of columns of the matrices A and B, and on entry with
|
|
C TRANS = 'C' or 'c', K specifies the number of rows of the
|
|
C matrices A and B. K must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - COMPLEX .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
|
|
C k when TRANS = 'N' or 'n', and is n otherwise.
|
|
C Before entry with TRANS = 'N' or 'n', the leading n by k
|
|
C part of the array A must contain the matrix A, otherwise
|
|
C the leading k by n part of the array A must contain the
|
|
C matrix A.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDA - INTEGER.
|
|
C On entry, LDA specifies the first dimension of A as declared
|
|
C in the calling (sub) program. When TRANS = 'N' or 'n'
|
|
C then LDA must be at least max( 1, n ), otherwise LDA must
|
|
C be at least max( 1, k ).
|
|
C Unchanged on exit.
|
|
C
|
|
C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
|
|
C k when TRANS = 'N' or 'n', and is n otherwise.
|
|
C Before entry with TRANS = 'N' or 'n', the leading n by k
|
|
C part of the array B must contain the matrix B, otherwise
|
|
C the leading k by n part of the array B must contain the
|
|
C matrix B.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDB - INTEGER.
|
|
C On entry, LDB specifies the first dimension of B as declared
|
|
C in the calling (sub) program. When TRANS = 'N' or 'n'
|
|
C then LDB must be at least max( 1, n ), otherwise LDB must
|
|
C be at least max( 1, k ).
|
|
C Unchanged on exit.
|
|
C
|
|
C BETA - REAL .
|
|
C On entry, BETA specifies the scalar beta.
|
|
C Unchanged on exit.
|
|
C
|
|
C C - COMPLEX array of DIMENSION ( LDC, n ).
|
|
C Before entry with UPLO = 'U' or 'u', the leading n by n
|
|
C upper triangular part of the array C must contain the upper
|
|
C triangular part of the hermitian matrix and the strictly
|
|
C lower triangular part of C is not referenced. On exit, the
|
|
C upper triangular part of the array C is overwritten by the
|
|
C upper triangular part of the updated matrix.
|
|
C Before entry with UPLO = 'L' or 'l', the leading n by n
|
|
C lower triangular part of the array C must contain the lower
|
|
C triangular part of the hermitian matrix and the strictly
|
|
C upper triangular part of C is not referenced. On exit, the
|
|
C lower triangular part of the array C is overwritten by the
|
|
C lower triangular part of the updated matrix.
|
|
C Note that the imaginary parts of the diagonal elements need
|
|
C not be set, they are assumed to be zero, and on exit they
|
|
C are set to zero.
|
|
C
|
|
C LDC - INTEGER.
|
|
C On entry, LDC specifies the first dimension of C as declared
|
|
C in the calling (sub) program. LDC must be at least
|
|
C max( 1, n ).
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
|
|
C A set of level 3 basic linear algebra subprograms.
|
|
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 890208 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE CHER2K
|
|
C .. Scalar Arguments ..
|
|
CHARACTER*1 UPLO, TRANS
|
|
INTEGER N, K, LDA, LDB, LDC
|
|
REAL BETA
|
|
COMPLEX ALPHA
|
|
C .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC CONJG, MAX, REAL
|
|
C .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I, INFO, J, L, NROWA
|
|
COMPLEX TEMP1, TEMP2
|
|
C .. Parameters ..
|
|
REAL ONE
|
|
PARAMETER ( ONE = 1.0E+0 )
|
|
COMPLEX ZERO
|
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
C***FIRST EXECUTABLE STATEMENT CHER2K
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
IF( LSAME( TRANS, 'N' ) )THEN
|
|
NROWA = N
|
|
ELSE
|
|
NROWA = K
|
|
END IF
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
C
|
|
INFO = 0
|
|
IF( ( .NOT.UPPER ).AND.
|
|
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
|
|
INFO = 1
|
|
ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
|
|
$ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
|
|
INFO = 2
|
|
ELSE IF( N .LT.0 )THEN
|
|
INFO = 3
|
|
ELSE IF( K .LT.0 )THEN
|
|
INFO = 4
|
|
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
|
|
INFO = 7
|
|
ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
|
|
INFO = 9
|
|
ELSE IF( LDC.LT.MAX( 1, N ) )THEN
|
|
INFO = 12
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'CHER2K', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( N.EQ.0 ).OR.
|
|
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
C
|
|
C And when alpha.eq.zero.
|
|
C
|
|
IF( ALPHA.EQ.ZERO )THEN
|
|
IF( UPPER )THEN
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
DO 20, J = 1, N
|
|
DO 10, I = 1, J
|
|
C( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40, J = 1, N
|
|
DO 30, I = 1, J - 1
|
|
C( I, J ) = BETA*C( I, J )
|
|
30 CONTINUE
|
|
C( J, J ) = BETA*REAL( C( J, J ) )
|
|
40 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
DO 60, J = 1, N
|
|
DO 50, I = J, N
|
|
C( I, J ) = ZERO
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 80, J = 1, N
|
|
C( J, J ) = BETA*REAL( C( J, J ) )
|
|
DO 70, I = J + 1, N
|
|
C( I, J ) = BETA*C( I, J )
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Start the operations.
|
|
C
|
|
IF( LSAME( TRANS, 'N' ) )THEN
|
|
C
|
|
C Form C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) +
|
|
C C.
|
|
C
|
|
IF( UPPER )THEN
|
|
DO 130, J = 1, N
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
DO 90, I = 1, J
|
|
C( I, J ) = ZERO
|
|
90 CONTINUE
|
|
ELSE IF( BETA.NE.ONE )THEN
|
|
DO 100, I = 1, J - 1
|
|
C( I, J ) = BETA*C( I, J )
|
|
100 CONTINUE
|
|
C( J, J ) = BETA*REAL( C( J, J ) )
|
|
END IF
|
|
DO 120, L = 1, K
|
|
IF( ( A( J, L ).NE.ZERO ).OR.
|
|
$ ( B( J, L ).NE.ZERO ) )THEN
|
|
TEMP1 = ALPHA*CONJG( B( J, L ) )
|
|
TEMP2 = CONJG( ALPHA*A( J, L ) )
|
|
DO 110, I = 1, J - 1
|
|
C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
|
|
$ B( I, L )*TEMP2
|
|
110 CONTINUE
|
|
C( J, J ) = REAL( C( J, J ) ) +
|
|
$ REAL( A( J, L )*TEMP1 +
|
|
$ B( J, L )*TEMP2 )
|
|
END IF
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
ELSE
|
|
DO 180, J = 1, N
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
DO 140, I = J, N
|
|
C( I, J ) = ZERO
|
|
140 CONTINUE
|
|
ELSE IF( BETA.NE.ONE )THEN
|
|
DO 150, I = J + 1, N
|
|
C( I, J ) = BETA*C( I, J )
|
|
150 CONTINUE
|
|
C( J, J ) = BETA*REAL( C( J, J ) )
|
|
END IF
|
|
DO 170, L = 1, K
|
|
IF( ( A( J, L ).NE.ZERO ).OR.
|
|
$ ( B( J, L ).NE.ZERO ) )THEN
|
|
TEMP1 = ALPHA*CONJG( B( J, L ) )
|
|
TEMP2 = CONJG( ALPHA*A( J, L ) )
|
|
DO 160, I = J + 1, N
|
|
C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
|
|
$ B( I, L )*TEMP2
|
|
160 CONTINUE
|
|
C( J, J ) = REAL( C( J, J ) ) +
|
|
$ REAL( A( J, L )*TEMP1 +
|
|
$ B( J, L )*TEMP2 )
|
|
END IF
|
|
170 CONTINUE
|
|
180 CONTINUE
|
|
END IF
|
|
ELSE
|
|
C
|
|
C Form C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A +
|
|
C C.
|
|
C
|
|
IF( UPPER )THEN
|
|
DO 210, J = 1, N
|
|
DO 200, I = 1, J
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 190, L = 1, K
|
|
TEMP1 = TEMP1 + CONJG( A( L, I ) )*B( L, J )
|
|
TEMP2 = TEMP2 + CONJG( B( L, I ) )*A( L, J )
|
|
190 CONTINUE
|
|
IF( I.EQ.J )THEN
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
C( J, J ) = REAL( ALPHA *TEMP1 +
|
|
$ CONJG( ALPHA )*TEMP2 )
|
|
ELSE
|
|
C( J, J ) = BETA*REAL( C( J, J ) ) +
|
|
$ REAL( ALPHA *TEMP1 +
|
|
$ CONJG( ALPHA )*TEMP2 )
|
|
END IF
|
|
ELSE
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
C( I, J ) = ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
|
|
ELSE
|
|
C( I, J ) = BETA *C( I, J ) +
|
|
$ ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
|
|
END IF
|
|
END IF
|
|
200 CONTINUE
|
|
210 CONTINUE
|
|
ELSE
|
|
DO 240, J = 1, N
|
|
DO 230, I = J, N
|
|
TEMP1 = ZERO
|
|
TEMP2 = ZERO
|
|
DO 220, L = 1, K
|
|
TEMP1 = TEMP1 + CONJG( A( L, I ) )*B( L, J )
|
|
TEMP2 = TEMP2 + CONJG( B( L, I ) )*A( L, J )
|
|
220 CONTINUE
|
|
IF( I.EQ.J )THEN
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
C( J, J ) = REAL( ALPHA *TEMP1 +
|
|
$ CONJG( ALPHA )*TEMP2 )
|
|
ELSE
|
|
C( J, J ) = BETA*REAL( C( J, J ) ) +
|
|
$ REAL( ALPHA *TEMP1 +
|
|
$ CONJG( ALPHA )*TEMP2 )
|
|
END IF
|
|
ELSE
|
|
IF( BETA.EQ.REAL( ZERO ) )THEN
|
|
C( I, J ) = ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
|
|
ELSE
|
|
C( I, J ) = BETA *C( I, J ) +
|
|
$ ALPHA*TEMP1 + CONJG( ALPHA )*TEMP2
|
|
END IF
|
|
END IF
|
|
230 CONTINUE
|
|
240 CONTINUE
|
|
END IF
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of CHER2K.
|
|
C
|
|
END
|