mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
277 lines
8.9 KiB
Fortran
277 lines
8.9 KiB
Fortran
*DECK CHPMV
|
|
SUBROUTINE CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
|
|
C***BEGIN PROLOGUE CHPMV
|
|
C***PURPOSE Perform the matrix-vector operation.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B4
|
|
C***TYPE COMPLEX (SHPMV-S, DHPMV-D, CHPMV-C)
|
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J. J., (ANL)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S., (NAG)
|
|
C Hanson, R. J., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C CHPMV performs the matrix-vector operation
|
|
C
|
|
C y := alpha*A*x + beta*y,
|
|
C
|
|
C where alpha and beta are scalars, x and y are n element vectors and
|
|
C A is an n by n hermitian matrix, supplied in packed form.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C UPLO - CHARACTER*1.
|
|
C On entry, UPLO specifies whether the upper or lower
|
|
C triangular part of the matrix A is supplied in the packed
|
|
C array AP as follows:
|
|
C
|
|
C UPLO = 'U' or 'u' The upper triangular part of A is
|
|
C supplied in AP.
|
|
C
|
|
C UPLO = 'L' or 'l' The lower triangular part of A is
|
|
C supplied in AP.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the order of the matrix A.
|
|
C N must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - COMPLEX .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C AP - COMPLEX array of DIMENSION at least
|
|
C ( ( n*( n + 1))/2).
|
|
C Before entry with UPLO = 'U' or 'u', the array AP must
|
|
C contain the upper triangular part of the hermitian matrix
|
|
C packed sequentially, column by column, so that AP( 1 )
|
|
C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
|
C and a( 2, 2 ) respectively, and so on.
|
|
C Before entry with UPLO = 'L' or 'l', the array AP must
|
|
C contain the lower triangular part of the hermitian matrix
|
|
C packed sequentially, column by column, so that AP( 1 )
|
|
C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
|
C and a( 3, 1 ) respectively, and so on.
|
|
C Note that the imaginary parts of the diagonal elements need
|
|
C not be set and are assumed to be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C X - COMPLEX array of dimension at least
|
|
C ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
C Before entry, the incremented array X must contain the n
|
|
C element vector x.
|
|
C Unchanged on exit.
|
|
C
|
|
C INCX - INTEGER.
|
|
C On entry, INCX specifies the increment for the elements of
|
|
C X. INCX must not be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C BETA - COMPLEX .
|
|
C On entry, BETA specifies the scalar beta. When BETA is
|
|
C supplied as zero then Y need not be set on input.
|
|
C Unchanged on exit.
|
|
C
|
|
C Y - COMPLEX array of dimension at least
|
|
C ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
C Before entry, the incremented array Y must contain the n
|
|
C element vector y. On exit, Y is overwritten by the updated
|
|
C vector y.
|
|
C
|
|
C INCY - INTEGER.
|
|
C On entry, INCY specifies the increment for the elements of
|
|
C Y. INCY must not be zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
|
C Hanson, R. J. An extended set of Fortran basic linear
|
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
|
C pp. 1-17, March 1988.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 861022 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE CHPMV
|
|
C .. Scalar Arguments ..
|
|
COMPLEX ALPHA, BETA
|
|
INTEGER INCX, INCY, N
|
|
CHARACTER*1 UPLO
|
|
C .. Array Arguments ..
|
|
COMPLEX AP( * ), X( * ), Y( * )
|
|
C .. Parameters ..
|
|
COMPLEX ONE
|
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
|
COMPLEX ZERO
|
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
C .. Local Scalars ..
|
|
COMPLEX TEMP1, TEMP2
|
|
INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC CONJG, REAL
|
|
C***FIRST EXECUTABLE STATEMENT CHPMV
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
INFO = 0
|
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
|
INFO = 1
|
|
ELSE IF( N.LT.0 )THEN
|
|
INFO = 2
|
|
ELSE IF( INCX.EQ.0 )THEN
|
|
INFO = 6
|
|
ELSE IF( INCY.EQ.0 )THEN
|
|
INFO = 9
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'CHPMV ', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
C
|
|
C Set up the start points in X and Y.
|
|
C
|
|
IF( INCX.GT.0 )THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - ( N - 1 )*INCX
|
|
END IF
|
|
IF( INCY.GT.0 )THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - ( N - 1 )*INCY
|
|
END IF
|
|
C
|
|
C Start the operations. In this version the elements of the array AP
|
|
C are accessed sequentially with one pass through AP.
|
|
C
|
|
C First form y := beta*y.
|
|
C
|
|
IF( BETA.NE.ONE )THEN
|
|
IF( INCY.EQ.1 )THEN
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 10, I = 1, N
|
|
Y( I ) = ZERO
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20, I = 1, N
|
|
Y( I ) = BETA*Y( I )
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IY = KY
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 30, I = 1, N
|
|
Y( IY ) = ZERO
|
|
IY = IY + INCY
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40, I = 1, N
|
|
Y( IY ) = BETA*Y( IY )
|
|
IY = IY + INCY
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF( ALPHA.EQ.ZERO )
|
|
$ RETURN
|
|
KK = 1
|
|
IF( LSAME( UPLO, 'U' ) )THEN
|
|
C
|
|
C Form y when AP contains the upper triangle.
|
|
C
|
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
|
DO 60, J = 1, N
|
|
TEMP1 = ALPHA*X( J )
|
|
TEMP2 = ZERO
|
|
K = KK
|
|
DO 50, I = 1, J - 1
|
|
Y( I ) = Y( I ) + TEMP1*AP( K )
|
|
TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I )
|
|
K = K + 1
|
|
50 CONTINUE
|
|
Y( J ) = Y( J ) + TEMP1*REAL( AP( KK + J - 1 ) )
|
|
$ + ALPHA*TEMP2
|
|
KK = KK + J
|
|
60 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
JY = KY
|
|
DO 80, J = 1, N
|
|
TEMP1 = ALPHA*X( JX )
|
|
TEMP2 = ZERO
|
|
IX = KX
|
|
IY = KY
|
|
DO 70, K = KK, KK + J - 2
|
|
Y( IY ) = Y( IY ) + TEMP1*AP( K )
|
|
TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX )
|
|
IX = IX + INCX
|
|
IY = IY + INCY
|
|
70 CONTINUE
|
|
Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK + J - 1 ) )
|
|
$ + ALPHA*TEMP2
|
|
JX = JX + INCX
|
|
JY = JY + INCY
|
|
KK = KK + J
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE
|
|
C
|
|
C Form y when AP contains the lower triangle.
|
|
C
|
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
|
DO 100, J = 1, N
|
|
TEMP1 = ALPHA*X( J )
|
|
TEMP2 = ZERO
|
|
Y( J ) = Y( J ) + TEMP1*REAL( AP( KK ) )
|
|
K = KK + 1
|
|
DO 90, I = J + 1, N
|
|
Y( I ) = Y( I ) + TEMP1*AP( K )
|
|
TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I )
|
|
K = K + 1
|
|
90 CONTINUE
|
|
Y( J ) = Y( J ) + ALPHA*TEMP2
|
|
KK = KK + ( N - J + 1 )
|
|
100 CONTINUE
|
|
ELSE
|
|
JX = KX
|
|
JY = KY
|
|
DO 120, J = 1, N
|
|
TEMP1 = ALPHA*X( JX )
|
|
TEMP2 = ZERO
|
|
Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK ) )
|
|
IX = JX
|
|
IY = JY
|
|
DO 110, K = KK + 1, KK + N - J
|
|
IX = IX + INCX
|
|
IY = IY + INCY
|
|
Y( IY ) = Y( IY ) + TEMP1*AP( K )
|
|
TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX )
|
|
110 CONTINUE
|
|
Y( JY ) = Y( JY ) + ALPHA*TEMP2
|
|
JX = JX + INCX
|
|
JY = JY + INCY
|
|
KK = KK + ( N - J + 1 )
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of CHPMV .
|
|
C
|
|
END
|