OpenLibm/slatec/comlr.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

231 lines
7.9 KiB
Fortran

*DECK COMLR
SUBROUTINE COMLR (NM, N, LOW, IGH, HR, HI, WR, WI, IERR)
C***BEGIN PROLOGUE COMLR
C***PURPOSE Compute the eigenvalues of a complex upper Hessenberg
C matrix using the modified LR method.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C2B
C***TYPE COMPLEX (COMLR-C)
C***KEYWORDS EIGENVALUES, EISPACK, LR METHOD
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure COMLR,
C NUM. MATH. 12, 369-376(1968) by Martin and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).
C
C This subroutine finds the eigenvalues of a COMPLEX
C UPPER Hessenberg matrix by the modified LR method.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, HR and HI, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix H=(HR,HI). N is an INTEGER
C variable. N must be less than or equal to NM.
C
C LOW and IGH are two INTEGER variables determined by the
C balancing subroutine CBAL. If CBAL has not been used,
C set LOW=1 and IGH equal to the order of the matrix, N.
C
C HR and HI contain the real and imaginary parts, respectively,
C of the complex upper Hessenberg matrix. Their lower
C triangles below the subdiagonal contain the multipliers
C which were used in the reduction by COMHES, if performed.
C HR and HI are two-dimensional REAL arrays, dimensioned
C HR(NM,N) and HI(NM,N).
C
C On OUTPUT
C
C The upper Hessenberg portions of HR and HI have been
C destroyed. Therefore, they must be saved before calling
C COMLR if subsequent calculation of eigenvectors is to
C be performed.
C
C WR and WI contain the real and imaginary parts, respectively,
C of the eigenvalues of the upper Hessenberg matrix. If an
C error exit is made, the eigenvalues should be correct for
C indices IERR+1, IERR+2, ..., N. WR and WI are one-
C dimensional REAL arrays, dimensioned WR(N) and WI(N).
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C J if the J-th eigenvalue has not been
C determined after a total of 30*N iterations.
C The eigenvalues should be correct for indices
C IERR+1, IERR+2, ..., N.
C
C Calls CSROOT for complex square root.
C Calls CDIV for complex division.
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED CDIV, CSROOT
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE COMLR
C
INTEGER I,J,L,M,N,EN,LL,MM,NM,IGH,IM1,ITN,ITS,LOW,MP1,ENM1,IERR
REAL HR(NM,*),HI(NM,*),WR(*),WI(*)
REAL SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,S1,S2
C
C***FIRST EXECUTABLE STATEMENT COMLR
IERR = 0
C .......... STORE ROOTS ISOLATED BY CBAL ..........
DO 200 I = 1, N
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
WR(I) = HR(I,I)
WI(I) = HI(I,I)
200 CONTINUE
C
EN = IGH
TR = 0.0E0
TI = 0.0E0
ITN = 30*N
C .......... SEARCH FOR NEXT EIGENVALUE ..........
220 IF (EN .LT. LOW) GO TO 1001
ITS = 0
ENM1 = EN - 1
C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=EN STEP -1 UNTIL LOW E0 -- ..........
240 DO 260 LL = LOW, EN
L = EN + LOW - LL
IF (L .EQ. LOW) GO TO 300
S1 = ABS(HR(L-1,L-1)) + ABS(HI(L-1,L-1))
1 + ABS(HR(L,L)) + ABS(HI(L,L))
S2 = S1 + ABS(HR(L,L-1)) + ABS(HI(L,L-1))
IF (S2 .EQ. S1) GO TO 300
260 CONTINUE
C .......... FORM SHIFT ..........
300 IF (L .EQ. EN) GO TO 660
IF (ITN .EQ. 0) GO TO 1000
IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
SR = HR(EN,EN)
SI = HI(EN,EN)
XR = HR(ENM1,EN) * HR(EN,ENM1) - HI(ENM1,EN) * HI(EN,ENM1)
XI = HR(ENM1,EN) * HI(EN,ENM1) + HI(ENM1,EN) * HR(EN,ENM1)
IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340
YR = (HR(ENM1,ENM1) - SR) / 2.0E0
YI = (HI(ENM1,ENM1) - SI) / 2.0E0
CALL CSROOT(YR**2-YI**2+XR,2.0E0*YR*YI+XI,ZZR,ZZI)
IF (YR * ZZR + YI * ZZI .GE. 0.0E0) GO TO 310
ZZR = -ZZR
ZZI = -ZZI
310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
SR = SR - XR
SI = SI - XI
GO TO 340
C .......... FORM EXCEPTIONAL SHIFT ..........
320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENM1,EN-2))
SI = ABS(HI(EN,ENM1)) + ABS(HI(ENM1,EN-2))
C
340 DO 360 I = LOW, EN
HR(I,I) = HR(I,I) - SR
HI(I,I) = HI(I,I) - SI
360 CONTINUE
C
TR = TR + SR
TI = TI + SI
ITS = ITS + 1
ITN = ITN - 1
C .......... LOOK FOR TWO CONSECUTIVE SMALL
C SUB-DIAGONAL ELEMENTS ..........
XR = ABS(HR(ENM1,ENM1)) + ABS(HI(ENM1,ENM1))
YR = ABS(HR(EN,ENM1)) + ABS(HI(EN,ENM1))
ZZR = ABS(HR(EN,EN)) + ABS(HI(EN,EN))
C .......... FOR M=EN-1 STEP -1 UNTIL L DO -- ..........
DO 380 MM = L, ENM1
M = ENM1 + L - MM
IF (M .EQ. L) GO TO 420
YI = YR
YR = ABS(HR(M,M-1)) + ABS(HI(M,M-1))
XI = ZZR
ZZR = XR
XR = ABS(HR(M-1,M-1)) + ABS(HI(M-1,M-1))
S1 = ZZR / YI * (ZZR + XR + XI)
S2 = S1 + YR
IF (S2 .EQ. S1) GO TO 420
380 CONTINUE
C .......... TRIANGULAR DECOMPOSITION H=L*R ..........
420 MP1 = M + 1
C
DO 520 I = MP1, EN
IM1 = I - 1
XR = HR(IM1,IM1)
XI = HI(IM1,IM1)
YR = HR(I,IM1)
YI = HI(I,IM1)
IF (ABS(XR) + ABS(XI) .GE. ABS(YR) + ABS(YI)) GO TO 460
C .......... INTERCHANGE ROWS OF HR AND HI ..........
DO 440 J = IM1, EN
ZZR = HR(IM1,J)
HR(IM1,J) = HR(I,J)
HR(I,J) = ZZR
ZZI = HI(IM1,J)
HI(IM1,J) = HI(I,J)
HI(I,J) = ZZI
440 CONTINUE
C
CALL CDIV(XR,XI,YR,YI,ZZR,ZZI)
WR(I) = 1.0E0
GO TO 480
460 CALL CDIV(YR,YI,XR,XI,ZZR,ZZI)
WR(I) = -1.0E0
480 HR(I,IM1) = ZZR
HI(I,IM1) = ZZI
C
DO 500 J = I, EN
HR(I,J) = HR(I,J) - ZZR * HR(IM1,J) + ZZI * HI(IM1,J)
HI(I,J) = HI(I,J) - ZZR * HI(IM1,J) - ZZI * HR(IM1,J)
500 CONTINUE
C
520 CONTINUE
C .......... COMPOSITION R*L=H ..........
DO 640 J = MP1, EN
XR = HR(J,J-1)
XI = HI(J,J-1)
HR(J,J-1) = 0.0E0
HI(J,J-1) = 0.0E0
C .......... INTERCHANGE COLUMNS OF HR AND HI,
C IF NECESSARY ..........
IF (WR(J) .LE. 0.0E0) GO TO 580
C
DO 540 I = L, J
ZZR = HR(I,J-1)
HR(I,J-1) = HR(I,J)
HR(I,J) = ZZR
ZZI = HI(I,J-1)
HI(I,J-1) = HI(I,J)
HI(I,J) = ZZI
540 CONTINUE
C
580 DO 600 I = L, J
HR(I,J-1) = HR(I,J-1) + XR * HR(I,J) - XI * HI(I,J)
HI(I,J-1) = HI(I,J-1) + XR * HI(I,J) + XI * HR(I,J)
600 CONTINUE
C
640 CONTINUE
C
GO TO 240
C .......... A ROOT FOUND ..........
660 WR(EN) = HR(EN,EN) + TR
WI(EN) = HI(EN,EN) + TI
EN = ENM1
GO TO 220
C .......... SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30*N ITERATIONS ..........
1000 IERR = EN
1001 RETURN
END