mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
249 lines
8.2 KiB
Fortran
249 lines
8.2 KiB
Fortran
*DECK COMQR
|
|
SUBROUTINE COMQR (NM, N, LOW, IGH, HR, HI, WR, WI, IERR)
|
|
C***BEGIN PROLOGUE COMQR
|
|
C***PURPOSE Compute the eigenvalues of complex upper Hessenberg matrix
|
|
C using the QR method.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4C2B
|
|
C***TYPE COMPLEX (HQR-S, COMQR-C)
|
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of a unitary analogue of the
|
|
C ALGOL procedure COMLR, NUM. MATH. 12, 369-376(1968) by Martin
|
|
C and Wilkinson.
|
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).
|
|
C The unitary analogue substitutes the QR algorithm of Francis
|
|
C (COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.
|
|
C
|
|
C This subroutine finds the eigenvalues of a COMPLEX
|
|
C upper Hessenberg matrix by the QR method.
|
|
C
|
|
C On INPUT
|
|
C
|
|
C NM must be set to the row dimension of the two-dimensional
|
|
C array parameters, HR and HI, as declared in the calling
|
|
C program dimension statement. NM is an INTEGER variable.
|
|
C
|
|
C N is the order of the matrix H=(HR,HI). N is an INTEGER
|
|
C variable. N must be less than or equal to NM.
|
|
C
|
|
C LOW and IGH are two INTEGER variables determined by the
|
|
C balancing subroutine CBAL. If CBAL has not been used,
|
|
C set LOW=1 and IGH equal to the order of the matrix, N.
|
|
C
|
|
C HR and HI contain the real and imaginary parts, respectively,
|
|
C of the complex upper Hessenberg matrix. Their lower
|
|
C triangles below the subdiagonal contain information about
|
|
C the unitary transformations used in the reduction by CORTH,
|
|
C if performed. HR and HI are two-dimensional REAL arrays,
|
|
C dimensioned HR(NM,N) and HI(NM,N).
|
|
C
|
|
C On OUTPUT
|
|
C
|
|
C The upper Hessenberg portions of HR and HI have been
|
|
C destroyed. Therefore, they must be saved before calling
|
|
C COMQR if subsequent calculation of eigenvectors is to
|
|
C be performed.
|
|
C
|
|
C WR and WI contain the real and imaginary parts, respectively,
|
|
C of the eigenvalues of the upper Hessenberg matrix. If an
|
|
C error exit is made, the eigenvalues should be correct for
|
|
C indices IERR+1, IERR+2, ..., N. WR and WI are one-
|
|
C dimensional REAL arrays, dimensioned WR(N) and WI(N).
|
|
C
|
|
C IERR is an INTEGER flag set to
|
|
C Zero for normal return,
|
|
C J if the J-th eigenvalue has not been
|
|
C determined after a total of 30*N iterations.
|
|
C The eigenvalues should be correct for indices
|
|
C IERR+1, IERR+2, ..., N.
|
|
C
|
|
C Calls CSROOT for complex square root.
|
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
|
C Calls CDIV for complex division.
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C***ROUTINES CALLED CDIV, CSROOT, PYTHAG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE COMQR
|
|
C
|
|
INTEGER I,J,L,N,EN,LL,NM,IGH,ITN,ITS,LOW,LP1,ENM1,IERR
|
|
REAL HR(NM,*),HI(NM,*),WR(*),WI(*)
|
|
REAL SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,NORM,S1,S2
|
|
REAL PYTHAG
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT COMQR
|
|
IERR = 0
|
|
IF (LOW .EQ. IGH) GO TO 180
|
|
C .......... CREATE REAL SUBDIAGONAL ELEMENTS ..........
|
|
L = LOW + 1
|
|
C
|
|
DO 170 I = L, IGH
|
|
LL = MIN(I+1,IGH)
|
|
IF (HI(I,I-1) .EQ. 0.0E0) GO TO 170
|
|
NORM = PYTHAG(HR(I,I-1),HI(I,I-1))
|
|
YR = HR(I,I-1) / NORM
|
|
YI = HI(I,I-1) / NORM
|
|
HR(I,I-1) = NORM
|
|
HI(I,I-1) = 0.0E0
|
|
C
|
|
DO 155 J = I, IGH
|
|
SI = YR * HI(I,J) - YI * HR(I,J)
|
|
HR(I,J) = YR * HR(I,J) + YI * HI(I,J)
|
|
HI(I,J) = SI
|
|
155 CONTINUE
|
|
C
|
|
DO 160 J = LOW, LL
|
|
SI = YR * HI(J,I) + YI * HR(J,I)
|
|
HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
|
|
HI(J,I) = SI
|
|
160 CONTINUE
|
|
C
|
|
170 CONTINUE
|
|
C .......... STORE ROOTS ISOLATED BY CBAL ..........
|
|
180 DO 200 I = 1, N
|
|
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
|
|
WR(I) = HR(I,I)
|
|
WI(I) = HI(I,I)
|
|
200 CONTINUE
|
|
C
|
|
EN = IGH
|
|
TR = 0.0E0
|
|
TI = 0.0E0
|
|
ITN = 30*N
|
|
C .......... SEARCH FOR NEXT EIGENVALUE ..........
|
|
220 IF (EN .LT. LOW) GO TO 1001
|
|
ITS = 0
|
|
ENM1 = EN - 1
|
|
C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
|
|
C FOR L=EN STEP -1 UNTIL LOW E0 -- ..........
|
|
240 DO 260 LL = LOW, EN
|
|
L = EN + LOW - LL
|
|
IF (L .EQ. LOW) GO TO 300
|
|
S1 = ABS(HR(L-1,L-1)) + ABS(HI(L-1,L-1))
|
|
1 + ABS(HR(L,L)) +ABS(HI(L,L))
|
|
S2 = S1 + ABS(HR(L,L-1))
|
|
IF (S2 .EQ. S1) GO TO 300
|
|
260 CONTINUE
|
|
C .......... FORM SHIFT ..........
|
|
300 IF (L .EQ. EN) GO TO 660
|
|
IF (ITN .EQ. 0) GO TO 1000
|
|
IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
|
|
SR = HR(EN,EN)
|
|
SI = HI(EN,EN)
|
|
XR = HR(ENM1,EN) * HR(EN,ENM1)
|
|
XI = HI(ENM1,EN) * HR(EN,ENM1)
|
|
IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340
|
|
YR = (HR(ENM1,ENM1) - SR) / 2.0E0
|
|
YI = (HI(ENM1,ENM1) - SI) / 2.0E0
|
|
CALL CSROOT(YR**2-YI**2+XR,2.0E0*YR*YI+XI,ZZR,ZZI)
|
|
IF (YR * ZZR + YI * ZZI .GE. 0.0E0) GO TO 310
|
|
ZZR = -ZZR
|
|
ZZI = -ZZI
|
|
310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
|
|
SR = SR - XR
|
|
SI = SI - XI
|
|
GO TO 340
|
|
C .......... FORM EXCEPTIONAL SHIFT ..........
|
|
320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENM1,EN-2))
|
|
SI = 0.0E0
|
|
C
|
|
340 DO 360 I = LOW, EN
|
|
HR(I,I) = HR(I,I) - SR
|
|
HI(I,I) = HI(I,I) - SI
|
|
360 CONTINUE
|
|
C
|
|
TR = TR + SR
|
|
TI = TI + SI
|
|
ITS = ITS + 1
|
|
ITN = ITN - 1
|
|
C .......... REDUCE TO TRIANGLE (ROWS) ..........
|
|
LP1 = L + 1
|
|
C
|
|
DO 500 I = LP1, EN
|
|
SR = HR(I,I-1)
|
|
HR(I,I-1) = 0.0E0
|
|
NORM = PYTHAG(PYTHAG(HR(I-1,I-1),HI(I-1,I-1)),SR)
|
|
XR = HR(I-1,I-1) / NORM
|
|
WR(I-1) = XR
|
|
XI = HI(I-1,I-1) / NORM
|
|
WI(I-1) = XI
|
|
HR(I-1,I-1) = NORM
|
|
HI(I-1,I-1) = 0.0E0
|
|
HI(I,I-1) = SR / NORM
|
|
C
|
|
DO 490 J = I, EN
|
|
YR = HR(I-1,J)
|
|
YI = HI(I-1,J)
|
|
ZZR = HR(I,J)
|
|
ZZI = HI(I,J)
|
|
HR(I-1,J) = XR * YR + XI * YI + HI(I,I-1) * ZZR
|
|
HI(I-1,J) = XR * YI - XI * YR + HI(I,I-1) * ZZI
|
|
HR(I,J) = XR * ZZR - XI * ZZI - HI(I,I-1) * YR
|
|
HI(I,J) = XR * ZZI + XI * ZZR - HI(I,I-1) * YI
|
|
490 CONTINUE
|
|
C
|
|
500 CONTINUE
|
|
C
|
|
SI = HI(EN,EN)
|
|
IF (SI .EQ. 0.0E0) GO TO 540
|
|
NORM = PYTHAG(HR(EN,EN),SI)
|
|
SR = HR(EN,EN) / NORM
|
|
SI = SI / NORM
|
|
HR(EN,EN) = NORM
|
|
HI(EN,EN) = 0.0E0
|
|
C .......... INVERSE OPERATION (COLUMNS) ..........
|
|
540 DO 600 J = LP1, EN
|
|
XR = WR(J-1)
|
|
XI = WI(J-1)
|
|
C
|
|
DO 580 I = L, J
|
|
YR = HR(I,J-1)
|
|
YI = 0.0E0
|
|
ZZR = HR(I,J)
|
|
ZZI = HI(I,J)
|
|
IF (I .EQ. J) GO TO 560
|
|
YI = HI(I,J-1)
|
|
HI(I,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI
|
|
560 HR(I,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
|
|
HR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
|
|
HI(I,J) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI
|
|
580 CONTINUE
|
|
C
|
|
600 CONTINUE
|
|
C
|
|
IF (SI .EQ. 0.0E0) GO TO 240
|
|
C
|
|
DO 630 I = L, EN
|
|
YR = HR(I,EN)
|
|
YI = HI(I,EN)
|
|
HR(I,EN) = SR * YR - SI * YI
|
|
HI(I,EN) = SR * YI + SI * YR
|
|
630 CONTINUE
|
|
C
|
|
GO TO 240
|
|
C .......... A ROOT FOUND ..........
|
|
660 WR(EN) = HR(EN,EN) + TR
|
|
WI(EN) = HI(EN,EN) + TI
|
|
EN = ENM1
|
|
GO TO 220
|
|
C .......... SET ERROR -- NO CONVERGENCE TO AN
|
|
C EIGENVALUE AFTER 30*N ITERATIONS ..........
|
|
1000 IERR = EN
|
|
1001 RETURN
|
|
END
|