mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
167 lines
5 KiB
Fortran
167 lines
5 KiB
Fortran
*DECK DCHU
|
|
DOUBLE PRECISION FUNCTION DCHU (A, B, X)
|
|
C***BEGIN PROLOGUE DCHU
|
|
C***PURPOSE Compute the logarithmic confluent hypergeometric function.
|
|
C***LIBRARY SLATEC (FNLIB)
|
|
C***CATEGORY C11
|
|
C***TYPE DOUBLE PRECISION (CHU-S, DCHU-D)
|
|
C***KEYWORDS FNLIB, LOGARITHMIC CONFLUENT HYPERGEOMETRIC FUNCTION,
|
|
C SPECIAL FUNCTIONS
|
|
C***AUTHOR Fullerton, W., (LANL)
|
|
C***DESCRIPTION
|
|
C
|
|
C DCHU(A,B,X) calculates the double precision logarithmic confluent
|
|
C hypergeometric function U(A,B,X) for double precision arguments
|
|
C A, B, and X.
|
|
C
|
|
C This routine is not valid when 1+A-B is close to zero if X is small.
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED D1MACH, D9CHU, DEXPRL, DGAMMA, DGAMR, DPOCH,
|
|
C DPOCH1, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 770801 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900727 Added EXTERNAL statement. (WRB)
|
|
C***END PROLOGUE DCHU
|
|
DOUBLE PRECISION A, B, X, AINTB, ALNX, A0, BEPS, B0, C0, EPS,
|
|
1 FACTOR, GAMRI1, GAMRNI, PCH1AI, PCH1I, PI, POCHAI, SUM, T,
|
|
2 XEPS1, XI, XI1, XN, XTOEPS, D1MACH, DPOCH, DGAMMA, DGAMR,
|
|
3 DPOCH1, DEXPRL, D9CHU
|
|
EXTERNAL DGAMMA
|
|
SAVE PI, EPS
|
|
DATA PI / 3.1415926535 8979323846 2643383279 503 D0 /
|
|
DATA EPS / 0.0D0 /
|
|
C***FIRST EXECUTABLE STATEMENT DCHU
|
|
IF (EPS.EQ.0.0D0) EPS = D1MACH(3)
|
|
C
|
|
IF (X .EQ. 0.0D0) CALL XERMSG ('SLATEC', 'DCHU',
|
|
+ 'X IS ZERO SO DCHU IS INFINITE', 1, 2)
|
|
IF (X .LT. 0.0D0) CALL XERMSG ('SLATEC', 'DCHU',
|
|
+ 'X IS NEGATIVE, USE CCHU', 2, 2)
|
|
C
|
|
IF (MAX(ABS(A),1.0D0)*MAX(ABS(1.0D0+A-B),1.0D0).LT.
|
|
1 0.99D0*ABS(X)) GO TO 120
|
|
C
|
|
C THE ASCENDING SERIES WILL BE USED, BECAUSE THE DESCENDING RATIONAL
|
|
C APPROXIMATION (WHICH IS BASED ON THE ASYMPTOTIC SERIES) IS UNSTABLE.
|
|
C
|
|
IF (ABS(1.0D0+A-B) .LT. SQRT(EPS)) CALL XERMSG ('SLATEC', 'DCHU',
|
|
+ 'ALGORITHMIS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X', 10, 2)
|
|
C
|
|
IF (B.GE.0.0D0) AINTB = AINT(B+0.5D0)
|
|
IF (B.LT.0.0D0) AINTB = AINT(B-0.5D0)
|
|
BEPS = B - AINTB
|
|
N = AINTB
|
|
C
|
|
ALNX = LOG(X)
|
|
XTOEPS = EXP (-BEPS*ALNX)
|
|
C
|
|
C EVALUATE THE FINITE SUM. -----------------------------------------
|
|
C
|
|
IF (N.GE.1) GO TO 40
|
|
C
|
|
C CONSIDER THE CASE B .LT. 1.0 FIRST.
|
|
C
|
|
SUM = 1.0D0
|
|
IF (N.EQ.0) GO TO 30
|
|
C
|
|
T = 1.0D0
|
|
M = -N
|
|
DO 20 I=1,M
|
|
XI1 = I - 1
|
|
T = T*(A+XI1)*X/((B+XI1)*(XI1+1.0D0))
|
|
SUM = SUM + T
|
|
20 CONTINUE
|
|
C
|
|
30 SUM = DPOCH(1.0D0+A-B, -A)*SUM
|
|
GO TO 70
|
|
C
|
|
C NOW CONSIDER THE CASE B .GE. 1.0.
|
|
C
|
|
40 SUM = 0.0D0
|
|
M = N - 2
|
|
IF (M.LT.0) GO TO 70
|
|
T = 1.0D0
|
|
SUM = 1.0D0
|
|
IF (M.EQ.0) GO TO 60
|
|
C
|
|
DO 50 I=1,M
|
|
XI = I
|
|
T = T * (A-B+XI)*X/((1.0D0-B+XI)*XI)
|
|
SUM = SUM + T
|
|
50 CONTINUE
|
|
C
|
|
60 SUM = DGAMMA(B-1.0D0) * DGAMR(A) * X**(1-N) * XTOEPS * SUM
|
|
C
|
|
C NEXT EVALUATE THE INFINITE SUM. ----------------------------------
|
|
C
|
|
70 ISTRT = 0
|
|
IF (N.LT.1) ISTRT = 1 - N
|
|
XI = ISTRT
|
|
C
|
|
FACTOR = (-1.0D0)**N * DGAMR(1.0D0+A-B) * X**ISTRT
|
|
IF (BEPS.NE.0.0D0) FACTOR = FACTOR * BEPS*PI/SIN(BEPS*PI)
|
|
C
|
|
POCHAI = DPOCH (A, XI)
|
|
GAMRI1 = DGAMR (XI+1.0D0)
|
|
GAMRNI = DGAMR (AINTB+XI)
|
|
B0 = FACTOR * DPOCH(A,XI-BEPS) * GAMRNI * DGAMR(XI+1.0D0-BEPS)
|
|
C
|
|
IF (ABS(XTOEPS-1.0D0).GT.0.5D0) GO TO 90
|
|
C
|
|
C X**(-BEPS) IS CLOSE TO 1.0D0, SO WE MUST BE CAREFUL IN EVALUATING THE
|
|
C DIFFERENCES.
|
|
C
|
|
PCH1AI = DPOCH1 (A+XI, -BEPS)
|
|
PCH1I = DPOCH1 (XI+1.0D0-BEPS, BEPS)
|
|
C0 = FACTOR * POCHAI * GAMRNI * GAMRI1 * (
|
|
1 -DPOCH1(B+XI,-BEPS) + PCH1AI - PCH1I + BEPS*PCH1AI*PCH1I)
|
|
C
|
|
C XEPS1 = (1.0 - X**(-BEPS))/BEPS = (X**(-BEPS) - 1.0)/(-BEPS)
|
|
XEPS1 = ALNX*DEXPRL(-BEPS*ALNX)
|
|
C
|
|
DCHU = SUM + C0 + XEPS1*B0
|
|
XN = N
|
|
DO 80 I=1,1000
|
|
XI = ISTRT + I
|
|
XI1 = ISTRT + I - 1
|
|
B0 = (A+XI1-BEPS)*B0*X/((XN+XI1)*(XI-BEPS))
|
|
C0 = (A+XI1)*C0*X/((B+XI1)*XI)
|
|
1 - ((A-1.0D0)*(XN+2.D0*XI-1.0D0) + XI*(XI-BEPS)) * B0
|
|
2 / (XI*(B+XI1)*(A+XI1-BEPS))
|
|
T = C0 + XEPS1*B0
|
|
DCHU = DCHU + T
|
|
IF (ABS(T).LT.EPS*ABS(DCHU)) GO TO 130
|
|
80 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'DCHU',
|
|
+ 'NO CONVERGENCE IN 1000 TERMS OF THE ASCENDING SERIES', 3, 2)
|
|
C
|
|
C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE STRAIGHTFORWARD
|
|
C FORMULATION IS STABLE.
|
|
C
|
|
90 A0 = FACTOR * POCHAI * DGAMR(B+XI) * GAMRI1 / BEPS
|
|
B0 = XTOEPS * B0 / BEPS
|
|
C
|
|
DCHU = SUM + A0 - B0
|
|
DO 100 I=1,1000
|
|
XI = ISTRT + I
|
|
XI1 = ISTRT + I - 1
|
|
A0 = (A+XI1)*A0*X/((B+XI1)*XI)
|
|
B0 = (A+XI1-BEPS)*B0*X/((AINTB+XI1)*(XI-BEPS))
|
|
T = A0 - B0
|
|
DCHU = DCHU + T
|
|
IF (ABS(T).LT.EPS*ABS(DCHU)) GO TO 130
|
|
100 CONTINUE
|
|
CALL XERMSG ('SLATEC', 'DCHU',
|
|
+ 'NO CONVERGENCE IN 1000 TERMS OF THE ASCENDING SERIES', 3, 2)
|
|
C
|
|
C USE LUKE-S RATIONAL APPROXIMATION IN THE ASYMPTOTIC REGION.
|
|
C
|
|
120 DCHU = X**(-A) * D9CHU(A,B,X)
|
|
C
|
|
130 RETURN
|
|
END
|