mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
613 lines
18 KiB
Fortran
613 lines
18 KiB
Fortran
*DECK DDASTP
|
|
SUBROUTINE DDASTP (X, Y, YPRIME, NEQ, RES, JAC, H, WT, JSTART,
|
|
* IDID, RPAR, IPAR, PHI, DELTA, E, WM, IWM, ALPHA, BETA, GAMMA,
|
|
* PSI, SIGMA, CJ, CJOLD, HOLD, S, HMIN, UROUND, IPHASE, JCALC, K,
|
|
* KOLD, NS, NONNEG, NTEMP)
|
|
C***BEGIN PROLOGUE DDASTP
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Perform one step of the DDASSL integration.
|
|
C***LIBRARY SLATEC (DASSL)
|
|
C***TYPE DOUBLE PRECISION (SDASTP-S, DDASTP-D)
|
|
C***AUTHOR Petzold, Linda R., (LLNL)
|
|
C***DESCRIPTION
|
|
C-----------------------------------------------------------------------
|
|
C DDASTP SOLVES A SYSTEM OF DIFFERENTIAL/
|
|
C ALGEBRAIC EQUATIONS OF THE FORM
|
|
C G(X,Y,YPRIME) = 0, FOR ONE STEP (NORMALLY
|
|
C FROM X TO X+H).
|
|
C
|
|
C THE METHODS USED ARE MODIFIED DIVIDED
|
|
C DIFFERENCE,FIXED LEADING COEFFICIENT
|
|
C FORMS OF BACKWARD DIFFERENTIATION
|
|
C FORMULAS. THE CODE ADJUSTS THE STEPSIZE
|
|
C AND ORDER TO CONTROL THE LOCAL ERROR PER
|
|
C STEP.
|
|
C
|
|
C
|
|
C THE PARAMETERS REPRESENT
|
|
C X -- INDEPENDENT VARIABLE
|
|
C Y -- SOLUTION VECTOR AT X
|
|
C YPRIME -- DERIVATIVE OF SOLUTION VECTOR
|
|
C AFTER SUCCESSFUL STEP
|
|
C NEQ -- NUMBER OF EQUATIONS TO BE INTEGRATED
|
|
C RES -- EXTERNAL USER-SUPPLIED SUBROUTINE
|
|
C TO EVALUATE THE RESIDUAL. THE CALL IS
|
|
C CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
|
|
C X,Y,YPRIME ARE INPUT. DELTA IS OUTPUT.
|
|
C ON INPUT, IRES=0. RES SHOULD ALTER IRES ONLY
|
|
C IF IT ENCOUNTERS AN ILLEGAL VALUE OF Y OR A
|
|
C STOP CONDITION. SET IRES=-1 IF AN INPUT VALUE
|
|
C OF Y IS ILLEGAL, AND DDASTP WILL TRY TO SOLVE
|
|
C THE PROBLEM WITHOUT GETTING IRES = -1. IF
|
|
C IRES=-2, DDASTP RETURNS CONTROL TO THE CALLING
|
|
C PROGRAM WITH IDID = -11.
|
|
C JAC -- EXTERNAL USER-SUPPLIED ROUTINE TO EVALUATE
|
|
C THE ITERATION MATRIX (THIS IS OPTIONAL)
|
|
C THE CALL IS OF THE FORM
|
|
C CALL JAC(X,Y,YPRIME,PD,CJ,RPAR,IPAR)
|
|
C PD IS THE MATRIX OF PARTIAL DERIVATIVES,
|
|
C PD=DG/DY+CJ*DG/DYPRIME
|
|
C H -- APPROPRIATE STEP SIZE FOR NEXT STEP.
|
|
C NORMALLY DETERMINED BY THE CODE
|
|
C WT -- VECTOR OF WEIGHTS FOR ERROR CRITERION.
|
|
C JSTART -- INTEGER VARIABLE SET 0 FOR
|
|
C FIRST STEP, 1 OTHERWISE.
|
|
C IDID -- COMPLETION CODE WITH THE FOLLOWING MEANINGS:
|
|
C IDID= 1 -- THE STEP WAS COMPLETED SUCCESSFULLY
|
|
C IDID=-6 -- THE ERROR TEST FAILED REPEATEDLY
|
|
C IDID=-7 -- THE CORRECTOR COULD NOT CONVERGE
|
|
C IDID=-8 -- THE ITERATION MATRIX IS SINGULAR
|
|
C IDID=-9 -- THE CORRECTOR COULD NOT CONVERGE.
|
|
C THERE WERE REPEATED ERROR TEST
|
|
C FAILURES ON THIS STEP.
|
|
C IDID=-10-- THE CORRECTOR COULD NOT CONVERGE
|
|
C BECAUSE IRES WAS EQUAL TO MINUS ONE
|
|
C IDID=-11-- IRES EQUAL TO -2 WAS ENCOUNTERED,
|
|
C AND CONTROL IS BEING RETURNED TO
|
|
C THE CALLING PROGRAM
|
|
C RPAR,IPAR -- REAL AND INTEGER PARAMETER ARRAYS THAT
|
|
C ARE USED FOR COMMUNICATION BETWEEN THE
|
|
C CALLING PROGRAM AND EXTERNAL USER ROUTINES
|
|
C THEY ARE NOT ALTERED BY DDASTP
|
|
C PHI -- ARRAY OF DIVIDED DIFFERENCES USED BY
|
|
C DDASTP. THE LENGTH IS NEQ*(K+1),WHERE
|
|
C K IS THE MAXIMUM ORDER
|
|
C DELTA,E -- WORK VECTORS FOR DDASTP OF LENGTH NEQ
|
|
C WM,IWM -- REAL AND INTEGER ARRAYS STORING
|
|
C MATRIX INFORMATION SUCH AS THE MATRIX
|
|
C OF PARTIAL DERIVATIVES,PERMUTATION
|
|
C VECTOR, AND VARIOUS OTHER INFORMATION.
|
|
C
|
|
C THE OTHER PARAMETERS ARE INFORMATION
|
|
C WHICH IS NEEDED INTERNALLY BY DDASTP TO
|
|
C CONTINUE FROM STEP TO STEP.
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C***ROUTINES CALLED DDAJAC, DDANRM, DDASLV, DDATRP
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 830315 DATE WRITTEN
|
|
C 901009 Finished conversion to SLATEC 4.0 format (F.N.Fritsch)
|
|
C 901019 Merged changes made by C. Ulrich with SLATEC 4.0 format.
|
|
C 901026 Added explicit declarations for all variables and minor
|
|
C cosmetic changes to prologue. (FNF)
|
|
C***END PROLOGUE DDASTP
|
|
C
|
|
INTEGER NEQ, JSTART, IDID, IPAR(*), IWM(*), IPHASE, JCALC, K,
|
|
* KOLD, NS, NONNEG, NTEMP
|
|
DOUBLE PRECISION
|
|
* X, Y(*), YPRIME(*), H, WT(*), RPAR(*), PHI(NEQ,*), DELTA(*),
|
|
* E(*), WM(*), ALPHA(*), BETA(*), GAMMA(*), PSI(*), SIGMA(*), CJ,
|
|
* CJOLD, HOLD, S, HMIN, UROUND
|
|
EXTERNAL RES, JAC
|
|
C
|
|
EXTERNAL DDAJAC, DDANRM, DDASLV, DDATRP
|
|
DOUBLE PRECISION DDANRM
|
|
C
|
|
INTEGER I, IER, IRES, J, J1, KDIFF, KM1, KNEW, KP1, KP2, LCTF,
|
|
* LETF, LMXORD, LNJE, LNRE, LNST, M, MAXIT, NCF, NEF, NSF, NSP1
|
|
DOUBLE PRECISION
|
|
* ALPHA0, ALPHAS, CJLAST, CK, DELNRM, ENORM, ERK, ERKM1,
|
|
* ERKM2, ERKP1, ERR, EST, HNEW, OLDNRM, PNORM, R, RATE, TEMP1,
|
|
* TEMP2, TERK, TERKM1, TERKM2, TERKP1, XOLD, XRATE
|
|
LOGICAL CONVGD
|
|
C
|
|
PARAMETER (LMXORD=3)
|
|
PARAMETER (LNST=11)
|
|
PARAMETER (LNRE=12)
|
|
PARAMETER (LNJE=13)
|
|
PARAMETER (LETF=14)
|
|
PARAMETER (LCTF=15)
|
|
C
|
|
DATA MAXIT/4/
|
|
DATA XRATE/0.25D0/
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 1.
|
|
C INITIALIZE. ON THE FIRST CALL,SET
|
|
C THE ORDER TO 1 AND INITIALIZE
|
|
C OTHER VARIABLES.
|
|
C-----------------------------------------------------------------------
|
|
C
|
|
C INITIALIZATIONS FOR ALL CALLS
|
|
C***FIRST EXECUTABLE STATEMENT DDASTP
|
|
IDID=1
|
|
XOLD=X
|
|
NCF=0
|
|
NSF=0
|
|
NEF=0
|
|
IF(JSTART .NE. 0) GO TO 120
|
|
C
|
|
C IF THIS IS THE FIRST STEP,PERFORM
|
|
C OTHER INITIALIZATIONS
|
|
IWM(LETF) = 0
|
|
IWM(LCTF) = 0
|
|
K=1
|
|
KOLD=0
|
|
HOLD=0.0D0
|
|
JSTART=1
|
|
PSI(1)=H
|
|
CJOLD = 1.0D0/H
|
|
CJ = CJOLD
|
|
S = 100.D0
|
|
JCALC = -1
|
|
DELNRM=1.0D0
|
|
IPHASE = 0
|
|
NS=0
|
|
120 CONTINUE
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 2
|
|
C COMPUTE COEFFICIENTS OF FORMULAS FOR
|
|
C THIS STEP.
|
|
C-----------------------------------------------------------------------
|
|
200 CONTINUE
|
|
KP1=K+1
|
|
KP2=K+2
|
|
KM1=K-1
|
|
XOLD=X
|
|
IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0
|
|
NS=MIN(NS+1,KOLD+2)
|
|
NSP1=NS+1
|
|
IF(KP1 .LT. NS)GO TO 230
|
|
C
|
|
BETA(1)=1.0D0
|
|
ALPHA(1)=1.0D0
|
|
TEMP1=H
|
|
GAMMA(1)=0.0D0
|
|
SIGMA(1)=1.0D0
|
|
DO 210 I=2,KP1
|
|
TEMP2=PSI(I-1)
|
|
PSI(I-1)=TEMP1
|
|
BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2
|
|
TEMP1=TEMP2+H
|
|
ALPHA(I)=H/TEMP1
|
|
SIGMA(I)=(I-1)*SIGMA(I-1)*ALPHA(I)
|
|
GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H
|
|
210 CONTINUE
|
|
PSI(KP1)=TEMP1
|
|
230 CONTINUE
|
|
C
|
|
C COMPUTE ALPHAS, ALPHA0
|
|
ALPHAS = 0.0D0
|
|
ALPHA0 = 0.0D0
|
|
DO 240 I = 1,K
|
|
ALPHAS = ALPHAS - 1.0D0/I
|
|
ALPHA0 = ALPHA0 - ALPHA(I)
|
|
240 CONTINUE
|
|
C
|
|
C COMPUTE LEADING COEFFICIENT CJ
|
|
CJLAST = CJ
|
|
CJ = -ALPHAS/H
|
|
C
|
|
C COMPUTE VARIABLE STEPSIZE ERROR COEFFICIENT CK
|
|
CK = ABS(ALPHA(KP1) + ALPHAS - ALPHA0)
|
|
CK = MAX(CK,ALPHA(KP1))
|
|
C
|
|
C DECIDE WHETHER NEW JACOBIAN IS NEEDED
|
|
TEMP1 = (1.0D0 - XRATE)/(1.0D0 + XRATE)
|
|
TEMP2 = 1.0D0/TEMP1
|
|
IF (CJ/CJOLD .LT. TEMP1 .OR. CJ/CJOLD .GT. TEMP2) JCALC = -1
|
|
IF (CJ .NE. CJLAST) S = 100.D0
|
|
C
|
|
C CHANGE PHI TO PHI STAR
|
|
IF(KP1 .LT. NSP1) GO TO 280
|
|
DO 270 J=NSP1,KP1
|
|
DO 260 I=1,NEQ
|
|
260 PHI(I,J)=BETA(J)*PHI(I,J)
|
|
270 CONTINUE
|
|
280 CONTINUE
|
|
C
|
|
C UPDATE TIME
|
|
X=X+H
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 3
|
|
C PREDICT THE SOLUTION AND DERIVATIVE,
|
|
C AND SOLVE THE CORRECTOR EQUATION
|
|
C-----------------------------------------------------------------------
|
|
C
|
|
C FIRST,PREDICT THE SOLUTION AND DERIVATIVE
|
|
300 CONTINUE
|
|
DO 310 I=1,NEQ
|
|
Y(I)=PHI(I,1)
|
|
310 YPRIME(I)=0.0D0
|
|
DO 330 J=2,KP1
|
|
DO 320 I=1,NEQ
|
|
Y(I)=Y(I)+PHI(I,J)
|
|
320 YPRIME(I)=YPRIME(I)+GAMMA(J)*PHI(I,J)
|
|
330 CONTINUE
|
|
PNORM = DDANRM (NEQ,Y,WT,RPAR,IPAR)
|
|
C
|
|
C
|
|
C
|
|
C SOLVE THE CORRECTOR EQUATION USING A
|
|
C MODIFIED NEWTON SCHEME.
|
|
CONVGD= .TRUE.
|
|
M=0
|
|
IWM(LNRE)=IWM(LNRE)+1
|
|
IRES = 0
|
|
CALL RES(X,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
|
|
IF (IRES .LT. 0) GO TO 380
|
|
C
|
|
C
|
|
C IF INDICATED,REEVALUATE THE
|
|
C ITERATION MATRIX PD = DG/DY + CJ*DG/DYPRIME
|
|
C (WHERE G(X,Y,YPRIME)=0). SET
|
|
C JCALC TO 0 AS AN INDICATOR THAT
|
|
C THIS HAS BEEN DONE.
|
|
IF(JCALC .NE. -1)GO TO 340
|
|
IWM(LNJE)=IWM(LNJE)+1
|
|
JCALC=0
|
|
CALL DDAJAC(NEQ,X,Y,YPRIME,DELTA,CJ,H,
|
|
* IER,WT,E,WM,IWM,RES,IRES,UROUND,JAC,RPAR,
|
|
* IPAR,NTEMP)
|
|
CJOLD=CJ
|
|
S = 100.D0
|
|
IF (IRES .LT. 0) GO TO 380
|
|
IF(IER .NE. 0)GO TO 380
|
|
NSF=0
|
|
C
|
|
C
|
|
C INITIALIZE THE ERROR ACCUMULATION VECTOR E.
|
|
340 CONTINUE
|
|
DO 345 I=1,NEQ
|
|
345 E(I)=0.0D0
|
|
C
|
|
C
|
|
C CORRECTOR LOOP.
|
|
350 CONTINUE
|
|
C
|
|
C MULTIPLY RESIDUAL BY TEMP1 TO ACCELERATE CONVERGENCE
|
|
TEMP1 = 2.0D0/(1.0D0 + CJ/CJOLD)
|
|
DO 355 I = 1,NEQ
|
|
355 DELTA(I) = DELTA(I) * TEMP1
|
|
C
|
|
C COMPUTE A NEW ITERATE (BACK-SUBSTITUTION).
|
|
C STORE THE CORRECTION IN DELTA.
|
|
CALL DDASLV(NEQ,DELTA,WM,IWM)
|
|
C
|
|
C UPDATE Y, E, AND YPRIME
|
|
DO 360 I=1,NEQ
|
|
Y(I)=Y(I)-DELTA(I)
|
|
E(I)=E(I)-DELTA(I)
|
|
360 YPRIME(I)=YPRIME(I)-CJ*DELTA(I)
|
|
C
|
|
C TEST FOR CONVERGENCE OF THE ITERATION
|
|
DELNRM=DDANRM(NEQ,DELTA,WT,RPAR,IPAR)
|
|
IF (DELNRM .LE. 100.D0*UROUND*PNORM) GO TO 375
|
|
IF (M .GT. 0) GO TO 365
|
|
OLDNRM = DELNRM
|
|
GO TO 367
|
|
365 RATE = (DELNRM/OLDNRM)**(1.0D0/M)
|
|
IF (RATE .GT. 0.90D0) GO TO 370
|
|
S = RATE/(1.0D0 - RATE)
|
|
367 IF (S*DELNRM .LE. 0.33D0) GO TO 375
|
|
C
|
|
C THE CORRECTOR HAS NOT YET CONVERGED.
|
|
C UPDATE M AND TEST WHETHER THE
|
|
C MAXIMUM NUMBER OF ITERATIONS HAVE
|
|
C BEEN TRIED.
|
|
M=M+1
|
|
IF(M.GE.MAXIT)GO TO 370
|
|
C
|
|
C EVALUATE THE RESIDUAL
|
|
C AND GO BACK TO DO ANOTHER ITERATION
|
|
IWM(LNRE)=IWM(LNRE)+1
|
|
IRES = 0
|
|
CALL RES(X,Y,YPRIME,DELTA,IRES,
|
|
* RPAR,IPAR)
|
|
IF (IRES .LT. 0) GO TO 380
|
|
GO TO 350
|
|
C
|
|
C
|
|
C THE CORRECTOR FAILED TO CONVERGE IN MAXIT
|
|
C ITERATIONS. IF THE ITERATION MATRIX
|
|
C IS NOT CURRENT,RE-DO THE STEP WITH
|
|
C A NEW ITERATION MATRIX.
|
|
370 CONTINUE
|
|
IF(JCALC.EQ.0)GO TO 380
|
|
JCALC=-1
|
|
GO TO 300
|
|
C
|
|
C
|
|
C THE ITERATION HAS CONVERGED. IF NONNEGATIVITY OF SOLUTION IS
|
|
C REQUIRED, SET THE SOLUTION NONNEGATIVE, IF THE PERTURBATION
|
|
C TO DO IT IS SMALL ENOUGH. IF THE CHANGE IS TOO LARGE, THEN
|
|
C CONSIDER THE CORRECTOR ITERATION TO HAVE FAILED.
|
|
375 IF(NONNEG .EQ. 0) GO TO 390
|
|
DO 377 I = 1,NEQ
|
|
377 DELTA(I) = MIN(Y(I),0.0D0)
|
|
DELNRM = DDANRM(NEQ,DELTA,WT,RPAR,IPAR)
|
|
IF(DELNRM .GT. 0.33D0) GO TO 380
|
|
DO 378 I = 1,NEQ
|
|
378 E(I) = E(I) - DELTA(I)
|
|
GO TO 390
|
|
C
|
|
C
|
|
C EXITS FROM BLOCK 3
|
|
C NO CONVERGENCE WITH CURRENT ITERATION
|
|
C MATRIX,OR SINGULAR ITERATION MATRIX
|
|
380 CONVGD= .FALSE.
|
|
390 JCALC = 1
|
|
IF(.NOT.CONVGD)GO TO 600
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 4
|
|
C ESTIMATE THE ERRORS AT ORDERS K,K-1,K-2
|
|
C AS IF CONSTANT STEPSIZE WAS USED. ESTIMATE
|
|
C THE LOCAL ERROR AT ORDER K AND TEST
|
|
C WHETHER THE CURRENT STEP IS SUCCESSFUL.
|
|
C-----------------------------------------------------------------------
|
|
C
|
|
C ESTIMATE ERRORS AT ORDERS K,K-1,K-2
|
|
ENORM = DDANRM(NEQ,E,WT,RPAR,IPAR)
|
|
ERK = SIGMA(K+1)*ENORM
|
|
TERK = (K+1)*ERK
|
|
EST = ERK
|
|
KNEW=K
|
|
IF(K .EQ. 1)GO TO 430
|
|
DO 405 I = 1,NEQ
|
|
405 DELTA(I) = PHI(I,KP1) + E(I)
|
|
ERKM1=SIGMA(K)*DDANRM(NEQ,DELTA,WT,RPAR,IPAR)
|
|
TERKM1 = K*ERKM1
|
|
IF(K .GT. 2)GO TO 410
|
|
IF(TERKM1 .LE. 0.5D0*TERK)GO TO 420
|
|
GO TO 430
|
|
410 CONTINUE
|
|
DO 415 I = 1,NEQ
|
|
415 DELTA(I) = PHI(I,K) + DELTA(I)
|
|
ERKM2=SIGMA(K-1)*DDANRM(NEQ,DELTA,WT,RPAR,IPAR)
|
|
TERKM2 = (K-1)*ERKM2
|
|
IF(MAX(TERKM1,TERKM2).GT.TERK)GO TO 430
|
|
C LOWER THE ORDER
|
|
420 CONTINUE
|
|
KNEW=K-1
|
|
EST = ERKM1
|
|
C
|
|
C
|
|
C CALCULATE THE LOCAL ERROR FOR THE CURRENT STEP
|
|
C TO SEE IF THE STEP WAS SUCCESSFUL
|
|
430 CONTINUE
|
|
ERR = CK * ENORM
|
|
IF(ERR .GT. 1.0D0)GO TO 600
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 5
|
|
C THE STEP IS SUCCESSFUL. DETERMINE
|
|
C THE BEST ORDER AND STEPSIZE FOR
|
|
C THE NEXT STEP. UPDATE THE DIFFERENCES
|
|
C FOR THE NEXT STEP.
|
|
C-----------------------------------------------------------------------
|
|
IDID=1
|
|
IWM(LNST)=IWM(LNST)+1
|
|
KDIFF=K-KOLD
|
|
KOLD=K
|
|
HOLD=H
|
|
C
|
|
C
|
|
C ESTIMATE THE ERROR AT ORDER K+1 UNLESS:
|
|
C ALREADY DECIDED TO LOWER ORDER, OR
|
|
C ALREADY USING MAXIMUM ORDER, OR
|
|
C STEPSIZE NOT CONSTANT, OR
|
|
C ORDER RAISED IN PREVIOUS STEP
|
|
IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1
|
|
IF(IPHASE .EQ. 0)GO TO 545
|
|
IF(KNEW.EQ.KM1)GO TO 540
|
|
IF(K.EQ.IWM(LMXORD)) GO TO 550
|
|
IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550
|
|
DO 510 I=1,NEQ
|
|
510 DELTA(I)=E(I)-PHI(I,KP2)
|
|
ERKP1 = (1.0D0/(K+2))*DDANRM(NEQ,DELTA,WT,RPAR,IPAR)
|
|
TERKP1 = (K+2)*ERKP1
|
|
IF(K.GT.1)GO TO 520
|
|
IF(TERKP1.GE.0.5D0*TERK)GO TO 550
|
|
GO TO 530
|
|
520 IF(TERKM1.LE.MIN(TERK,TERKP1))GO TO 540
|
|
IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550
|
|
C
|
|
C RAISE ORDER
|
|
530 K=KP1
|
|
EST = ERKP1
|
|
GO TO 550
|
|
C
|
|
C LOWER ORDER
|
|
540 K=KM1
|
|
EST = ERKM1
|
|
GO TO 550
|
|
C
|
|
C IF IPHASE = 0, INCREASE ORDER BY ONE AND MULTIPLY STEPSIZE BY
|
|
C FACTOR TWO
|
|
545 K = KP1
|
|
HNEW = H*2.0D0
|
|
H = HNEW
|
|
GO TO 575
|
|
C
|
|
C
|
|
C DETERMINE THE APPROPRIATE STEPSIZE FOR
|
|
C THE NEXT STEP.
|
|
550 HNEW=H
|
|
TEMP2=K+1
|
|
R=(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
|
|
IF(R .LT. 2.0D0) GO TO 555
|
|
HNEW = 2.0D0*H
|
|
GO TO 560
|
|
555 IF(R .GT. 1.0D0) GO TO 560
|
|
R = MAX(0.5D0,MIN(0.9D0,R))
|
|
HNEW = H*R
|
|
560 H=HNEW
|
|
C
|
|
C
|
|
C UPDATE DIFFERENCES FOR NEXT STEP
|
|
575 CONTINUE
|
|
IF(KOLD.EQ.IWM(LMXORD))GO TO 585
|
|
DO 580 I=1,NEQ
|
|
580 PHI(I,KP2)=E(I)
|
|
585 CONTINUE
|
|
DO 590 I=1,NEQ
|
|
590 PHI(I,KP1)=PHI(I,KP1)+E(I)
|
|
DO 595 J1=2,KP1
|
|
J=KP1-J1+1
|
|
DO 595 I=1,NEQ
|
|
595 PHI(I,J)=PHI(I,J)+PHI(I,J+1)
|
|
RETURN
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C-----------------------------------------------------------------------
|
|
C BLOCK 6
|
|
C THE STEP IS UNSUCCESSFUL. RESTORE X,PSI,PHI
|
|
C DETERMINE APPROPRIATE STEPSIZE FOR
|
|
C CONTINUING THE INTEGRATION, OR EXIT WITH
|
|
C AN ERROR FLAG IF THERE HAVE BEEN MANY
|
|
C FAILURES.
|
|
C-----------------------------------------------------------------------
|
|
600 IPHASE = 1
|
|
C
|
|
C RESTORE X,PHI,PSI
|
|
X=XOLD
|
|
IF(KP1.LT.NSP1)GO TO 630
|
|
DO 620 J=NSP1,KP1
|
|
TEMP1=1.0D0/BETA(J)
|
|
DO 610 I=1,NEQ
|
|
610 PHI(I,J)=TEMP1*PHI(I,J)
|
|
620 CONTINUE
|
|
630 CONTINUE
|
|
DO 640 I=2,KP1
|
|
640 PSI(I-1)=PSI(I)-H
|
|
C
|
|
C
|
|
C TEST WHETHER FAILURE IS DUE TO CORRECTOR ITERATION
|
|
C OR ERROR TEST
|
|
IF(CONVGD)GO TO 660
|
|
IWM(LCTF)=IWM(LCTF)+1
|
|
C
|
|
C
|
|
C THE NEWTON ITERATION FAILED TO CONVERGE WITH
|
|
C A CURRENT ITERATION MATRIX. DETERMINE THE CAUSE
|
|
C OF THE FAILURE AND TAKE APPROPRIATE ACTION.
|
|
IF(IER.EQ.0)GO TO 650
|
|
C
|
|
C THE ITERATION MATRIX IS SINGULAR. REDUCE
|
|
C THE STEPSIZE BY A FACTOR OF 4. IF
|
|
C THIS HAPPENS THREE TIMES IN A ROW ON
|
|
C THE SAME STEP, RETURN WITH AN ERROR FLAG
|
|
NSF=NSF+1
|
|
R = 0.25D0
|
|
H=H*R
|
|
IF (NSF .LT. 3 .AND. ABS(H) .GE. HMIN) GO TO 690
|
|
IDID=-8
|
|
GO TO 675
|
|
C
|
|
C
|
|
C THE NEWTON ITERATION FAILED TO CONVERGE FOR A REASON
|
|
C OTHER THAN A SINGULAR ITERATION MATRIX. IF IRES = -2, THEN
|
|
C RETURN. OTHERWISE, REDUCE THE STEPSIZE AND TRY AGAIN, UNLESS
|
|
C TOO MANY FAILURES HAVE OCCURRED.
|
|
650 CONTINUE
|
|
IF (IRES .GT. -2) GO TO 655
|
|
IDID = -11
|
|
GO TO 675
|
|
655 NCF = NCF + 1
|
|
R = 0.25D0
|
|
H = H*R
|
|
IF (NCF .LT. 10 .AND. ABS(H) .GE. HMIN) GO TO 690
|
|
IDID = -7
|
|
IF (IRES .LT. 0) IDID = -10
|
|
IF (NEF .GE. 3) IDID = -9
|
|
GO TO 675
|
|
C
|
|
C
|
|
C THE NEWTON SCHEME CONVERGED, AND THE CAUSE
|
|
C OF THE FAILURE WAS THE ERROR ESTIMATE
|
|
C EXCEEDING THE TOLERANCE.
|
|
660 NEF=NEF+1
|
|
IWM(LETF)=IWM(LETF)+1
|
|
IF (NEF .GT. 1) GO TO 665
|
|
C
|
|
C ON FIRST ERROR TEST FAILURE, KEEP CURRENT ORDER OR LOWER
|
|
C ORDER BY ONE. COMPUTE NEW STEPSIZE BASED ON DIFFERENCES
|
|
C OF THE SOLUTION.
|
|
K = KNEW
|
|
TEMP2 = K + 1
|
|
R = 0.90D0*(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
|
|
R = MAX(0.25D0,MIN(0.9D0,R))
|
|
H = H*R
|
|
IF (ABS(H) .GE. HMIN) GO TO 690
|
|
IDID = -6
|
|
GO TO 675
|
|
C
|
|
C ON SECOND ERROR TEST FAILURE, USE THE CURRENT ORDER OR
|
|
C DECREASE ORDER BY ONE. REDUCE THE STEPSIZE BY A FACTOR OF
|
|
C FOUR.
|
|
665 IF (NEF .GT. 2) GO TO 670
|
|
K = KNEW
|
|
H = 0.25D0*H
|
|
IF (ABS(H) .GE. HMIN) GO TO 690
|
|
IDID = -6
|
|
GO TO 675
|
|
C
|
|
C ON THIRD AND SUBSEQUENT ERROR TEST FAILURES, SET THE ORDER TO
|
|
C ONE AND REDUCE THE STEPSIZE BY A FACTOR OF FOUR.
|
|
670 K = 1
|
|
H = 0.25D0*H
|
|
IF (ABS(H) .GE. HMIN) GO TO 690
|
|
IDID = -6
|
|
GO TO 675
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C FOR ALL CRASHES, RESTORE Y TO ITS LAST VALUE,
|
|
C INTERPOLATE TO FIND YPRIME AT LAST X, AND RETURN
|
|
675 CONTINUE
|
|
CALL DDATRP(X,X,Y,YPRIME,NEQ,K,PHI,PSI)
|
|
RETURN
|
|
C
|
|
C
|
|
C GO BACK AND TRY THIS STEP AGAIN
|
|
690 GO TO 200
|
|
C
|
|
C------END OF SUBROUTINE DDASTP------
|
|
END
|