OpenLibm/slatec/dhfti.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

331 lines
12 KiB
Fortran

*DECK DHFTI
SUBROUTINE DHFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
+ G, IP)
C***BEGIN PROLOGUE DHFTI
C***PURPOSE Solve a least squares problem for banded matrices using
C sequential accumulation of rows of the data matrix.
C Exactly one right-hand side vector is permitted.
C***LIBRARY SLATEC
C***CATEGORY D9
C***TYPE DOUBLE PRECISION (HFTI-S, DHFTI-D)
C***KEYWORDS CURVE FITTING, LEAST SQUARES
C***AUTHOR Lawson, C. L., (JPL)
C Hanson, R. J., (SNLA)
C***DESCRIPTION
C
C DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)
C
C This subroutine solves a linear least squares problem or a set of
C linear least squares problems having the same matrix but different
C right-side vectors. The problem data consists of an M by N matrix
C A, an M by NB matrix B, and an absolute tolerance parameter TAU
C whose usage is described below. The NB column vectors of B
C represent right-side vectors for NB distinct linear least squares
C problems.
C
C This set of problems can also be written as the matrix least
C squares problem
C
C AX = B,
C
C where X is the N by NB solution matrix.
C
C Note that if B is the M by M identity matrix, then X will be the
C pseudo-inverse of A.
C
C This subroutine first transforms the augmented matrix (A B) to a
C matrix (R C) using premultiplying Householder transformations with
C column interchanges. All subdiagonal elements in the matrix R are
C zero and its diagonal elements satisfy
C
C ABS(R(I,I)).GE.ABS(R(I+1,I+1)),
C
C I = 1,...,L-1, where
C
C L = MIN(M,N).
C
C The subroutine will compute an integer, KRANK, equal to the number
C of diagonal terms of R that exceed TAU in magnitude. Then a
C solution of minimum Euclidean length is computed using the first
C KRANK rows of (R C).
C
C To be specific we suggest that the user consider an easily
C computable matrix norm, such as, the maximum of all column sums of
C magnitudes.
C
C Now if the relative uncertainty of B is EPS, (norm of uncertainty/
C norm of B), it is suggested that TAU be set approximately equal to
C EPS*(norm of A).
C
C The user must dimension all arrays appearing in the call list..
C A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N). This
C permits the solution of a range of problems in the same array
C space.
C
C The entire set of parameters for DHFTI are
C
C INPUT.. All TYPE REAL variables are DOUBLE PRECISION
C
C A(*,*),MDA,M,N The array A(*,*) initially contains the M by N
C matrix A of the least squares problem AX = B.
C The first dimensioning parameter of the array
C A(*,*) is MDA, which must satisfy MDA.GE.M
C Either M.GE.N or M.LT.N is permitted. There
C is no restriction on the rank of A. The
C condition MDA.LT.M is considered an error.
C
C B(*),MDB,NB If NB = 0 the subroutine will perform the
C orthogonal decomposition but will make no
C references to the array B(*). If NB.GT.0
C the array B(*) must initially contain the M by
C NB matrix B of the least squares problem AX =
C B. If NB.GE.2 the array B(*) must be doubly
C subscripted with first dimensioning parameter
C MDB.GE.MAX(M,N). If NB = 1 the array B(*) may
C be either doubly or singly subscripted. In
C the latter case the value of MDB is arbitrary
C but it should be set to some valid integer
C value such as MDB = M.
C
C The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
C is considered an error.
C
C TAU Absolute tolerance parameter provided by user
C for pseudorank determination.
C
C H(*),G(*),IP(*) Arrays of working space used by DHFTI.
C
C OUTPUT.. All TYPE REAL variables are DOUBLE PRECISION
C
C A(*,*) The contents of the array A(*,*) will be
C modified by the subroutine. These contents
C are not generally required by the user.
C
C B(*) On return the array B(*) will contain the N by
C NB solution matrix X.
C
C KRANK Set by the subroutine to indicate the
C pseudorank of A.
C
C RNORM(*) On return, RNORM(J) will contain the Euclidean
C norm of the residual vector for the problem
C defined by the J-th column vector of the array
C B(*,*) for J = 1,...,NB.
C
C H(*),G(*) On return these arrays respectively contain
C elements of the pre- and post-multiplying
C Householder transformations used to compute
C the minimum Euclidean length solution.
C
C IP(*) Array in which the subroutine records indices
C describing the permutation of column vectors.
C The contents of arrays H(*),G(*) and IP(*)
C are not generally required by the user.
C
C***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
C Problems, Prentice-Hall, Inc., 1974, Chapter 14.
C***ROUTINES CALLED D1MACH, DH12, XERMSG
C***REVISION HISTORY (YYMMDD)
C 790101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891006 Cosmetic changes to prologue. (WRB)
C 891006 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 901005 Replace usage of DDIFF with usage of D1MACH. (RWC)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DHFTI
INTEGER I, II, IOPT, IP(*), IP1, J, JB, JJ, K, KP1, KRANK, L,
* LDIAG, LMAX, M, MDA, MDB, N, NB, NERR
DOUBLE PRECISION A, B, D1MACH, DZERO, FACTOR,
* G, H, HMAX, RELEPS, RNORM, SM, SM1, SZERO, TAU, TMP
DIMENSION A(MDA,*),B(MDB,*),H(*),G(*),RNORM(*)
SAVE RELEPS
DATA RELEPS /0.D0/
C BEGIN BLOCK PERMITTING ...EXITS TO 360
C***FIRST EXECUTABLE STATEMENT DHFTI
IF (RELEPS.EQ.0.D0) RELEPS = D1MACH(4)
SZERO = 0.0D0
DZERO = 0.0D0
FACTOR = 0.001D0
C
K = 0
LDIAG = MIN(M,N)
IF (LDIAG .LE. 0) GO TO 350
C BEGIN BLOCK PERMITTING ...EXITS TO 130
C BEGIN BLOCK PERMITTING ...EXITS TO 120
IF (MDA .GE. M) GO TO 10
NERR = 1
IOPT = 2
CALL XERMSG ('SLATEC', 'DHFTI',
+ 'MDA.LT.M, PROBABLE ERROR.',
+ NERR, IOPT)
C ...............EXIT
GO TO 360
10 CONTINUE
C
IF (NB .LE. 1 .OR. MAX(M,N) .LE. MDB) GO TO 20
NERR = 2
IOPT = 2
CALL XERMSG ('SLATEC', 'DHFTI',
+ 'MDB.LT.MAX(M,N).AND.NB.GT.1. PROBABLE ERROR.',
+ NERR, IOPT)
C ...............EXIT
GO TO 360
20 CONTINUE
C
DO 100 J = 1, LDIAG
C BEGIN BLOCK PERMITTING ...EXITS TO 70
IF (J .EQ. 1) GO TO 40
C
C UPDATE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
LMAX = J
DO 30 L = J, N
H(L) = H(L) - A(J-1,L)**2
IF (H(L) .GT. H(LMAX)) LMAX = L
30 CONTINUE
C ......EXIT
IF (FACTOR*H(LMAX) .GT. HMAX*RELEPS) GO TO 70
40 CONTINUE
C
C COMPUTE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
LMAX = J
DO 60 L = J, N
H(L) = 0.0D0
DO 50 I = J, M
H(L) = H(L) + A(I,L)**2
50 CONTINUE
IF (H(L) .GT. H(LMAX)) LMAX = L
60 CONTINUE
HMAX = H(LMAX)
70 CONTINUE
C ..
C LMAX HAS BEEN DETERMINED
C
C DO COLUMN INTERCHANGES IF NEEDED.
C ..
IP(J) = LMAX
IF (IP(J) .EQ. J) GO TO 90
DO 80 I = 1, M
TMP = A(I,J)
A(I,J) = A(I,LMAX)
A(I,LMAX) = TMP
80 CONTINUE
H(LMAX) = H(J)
90 CONTINUE
C
C COMPUTE THE J-TH TRANSFORMATION AND APPLY IT TO A
C AND B.
C ..
CALL DH12(1,J,J+1,M,A(1,J),1,H(J),A(1,J+1),1,MDA,
* N-J)
CALL DH12(2,J,J+1,M,A(1,J),1,H(J),B,1,MDB,NB)
100 CONTINUE
C
C DETERMINE THE PSEUDORANK, K, USING THE TOLERANCE,
C TAU.
C ..
DO 110 J = 1, LDIAG
C ......EXIT
IF (ABS(A(J,J)) .LE. TAU) GO TO 120
110 CONTINUE
K = LDIAG
C ......EXIT
GO TO 130
120 CONTINUE
K = J - 1
130 CONTINUE
KP1 = K + 1
C
C COMPUTE THE NORMS OF THE RESIDUAL VECTORS.
C
IF (NB .LT. 1) GO TO 170
DO 160 JB = 1, NB
TMP = SZERO
IF (M .LT. KP1) GO TO 150
DO 140 I = KP1, M
TMP = TMP + B(I,JB)**2
140 CONTINUE
150 CONTINUE
RNORM(JB) = SQRT(TMP)
160 CONTINUE
170 CONTINUE
C SPECIAL FOR PSEUDORANK = 0
IF (K .GT. 0) GO TO 210
IF (NB .LT. 1) GO TO 200
DO 190 JB = 1, NB
DO 180 I = 1, N
B(I,JB) = SZERO
180 CONTINUE
190 CONTINUE
200 CONTINUE
GO TO 340
210 CONTINUE
C
C IF THE PSEUDORANK IS LESS THAN N COMPUTE HOUSEHOLDER
C DECOMPOSITION OF FIRST K ROWS.
C ..
IF (K .EQ. N) GO TO 230
DO 220 II = 1, K
I = KP1 - II
CALL DH12(1,I,KP1,N,A(I,1),MDA,G(I),A,MDA,1,I-1)
220 CONTINUE
230 CONTINUE
C
C
IF (NB .LT. 1) GO TO 330
DO 320 JB = 1, NB
C
C SOLVE THE K BY K TRIANGULAR SYSTEM.
C ..
DO 260 L = 1, K
SM = DZERO
I = KP1 - L
IP1 = I + 1
IF (K .LT. IP1) GO TO 250
DO 240 J = IP1, K
SM = SM + A(I,J)*B(J,JB)
240 CONTINUE
250 CONTINUE
SM1 = SM
B(I,JB) = (B(I,JB) - SM1)/A(I,I)
260 CONTINUE
C
C COMPLETE COMPUTATION OF SOLUTION VECTOR.
C ..
IF (K .EQ. N) GO TO 290
DO 270 J = KP1, N
B(J,JB) = SZERO
270 CONTINUE
DO 280 I = 1, K
CALL DH12(2,I,KP1,N,A(I,1),MDA,G(I),B(1,JB),1,
* MDB,1)
280 CONTINUE
290 CONTINUE
C
C RE-ORDER THE SOLUTION VECTOR TO COMPENSATE FOR THE
C COLUMN INTERCHANGES.
C ..
DO 310 JJ = 1, LDIAG
J = LDIAG + 1 - JJ
IF (IP(J) .EQ. J) GO TO 300
L = IP(J)
TMP = B(L,JB)
B(L,JB) = B(J,JB)
B(J,JB) = TMP
300 CONTINUE
310 CONTINUE
320 CONTINUE
330 CONTINUE
340 CONTINUE
350 CONTINUE
C ..
C THE SOLUTION VECTORS, X, ARE NOW
C IN THE FIRST N ROWS OF THE ARRAY B(,).
C
KRANK = K
360 CONTINUE
RETURN
END