mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
263 lines
8.5 KiB
Fortran
263 lines
8.5 KiB
Fortran
*DECK DPBCO
|
|
SUBROUTINE DPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
|
|
C***BEGIN PROLOGUE DPBCO
|
|
C***PURPOSE Factor a real symmetric positive definite matrix stored in
|
|
C band form and estimate the condition number of the matrix.
|
|
C***LIBRARY SLATEC (LINPACK)
|
|
C***CATEGORY D2B2
|
|
C***TYPE DOUBLE PRECISION (SPBCO-S, DPBCO-D, CPBCO-C)
|
|
C***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
|
|
C MATRIX FACTORIZATION, POSITIVE DEFINITE
|
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
|
C***DESCRIPTION
|
|
C
|
|
C DPBCO factors a double precision symmetric positive definite
|
|
C matrix stored in band form and estimates the condition of the
|
|
C matrix.
|
|
C
|
|
C If RCOND is not needed, DPBFA is slightly faster.
|
|
C To solve A*X = B , follow DPBCO by DPBSL.
|
|
C To compute INVERSE(A)*C , follow DPBCO by DPBSL.
|
|
C To compute DETERMINANT(A) , follow DPBCO by DPBDI.
|
|
C
|
|
C On Entry
|
|
C
|
|
C ABD DOUBLE PRECISION(LDA, N)
|
|
C the matrix to be factored. The columns of the upper
|
|
C triangle are stored in the columns of ABD and the
|
|
C diagonals of the upper triangle are stored in the
|
|
C rows of ABD . See the comments below for details.
|
|
C
|
|
C LDA INTEGER
|
|
C the leading dimension of the array ABD .
|
|
C LDA must be .GE. M + 1 .
|
|
C
|
|
C N INTEGER
|
|
C the order of the matrix A .
|
|
C
|
|
C M INTEGER
|
|
C the number of diagonals above the main diagonal.
|
|
C 0 .LE. M .LT. N .
|
|
C
|
|
C On Return
|
|
C
|
|
C ABD an upper triangular matrix R , stored in band
|
|
C form, so that A = TRANS(R)*R .
|
|
C If INFO .NE. 0 , the factorization is not complete.
|
|
C
|
|
C RCOND DOUBLE PRECISION
|
|
C an estimate of the reciprocal condition of A .
|
|
C For the system A*X = B , relative perturbations
|
|
C in A and B of size EPSILON may cause
|
|
C relative perturbations in X of size EPSILON/RCOND .
|
|
C If RCOND is so small that the logical expression
|
|
C 1.0 + RCOND .EQ. 1.0
|
|
C is true, then A may be singular to working
|
|
C precision. In particular, RCOND is zero if
|
|
C exact singularity is detected or the estimate
|
|
C underflows. If INFO .NE. 0 , RCOND is unchanged.
|
|
C
|
|
C Z DOUBLE PRECISION(N)
|
|
C a work vector whose contents are usually unimportant.
|
|
C If A is singular to working precision, then Z is
|
|
C an approximate null vector in the sense that
|
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
|
C If INFO .NE. 0 , Z is unchanged.
|
|
C
|
|
C INFO INTEGER
|
|
C = 0 for normal return.
|
|
C = K signals an error condition. The leading minor
|
|
C of order K is not positive definite.
|
|
C
|
|
C Band Storage
|
|
C
|
|
C If A is a symmetric positive definite band matrix,
|
|
C the following program segment will set up the input.
|
|
C
|
|
C M = (band width above diagonal)
|
|
C DO 20 J = 1, N
|
|
C I1 = MAX(1, J-M)
|
|
C DO 10 I = I1, J
|
|
C K = I-J+M+1
|
|
C ABD(K,J) = A(I,J)
|
|
C 10 CONTINUE
|
|
C 20 CONTINUE
|
|
C
|
|
C This uses M + 1 rows of A , except for the M by M
|
|
C upper left triangle, which is ignored.
|
|
C
|
|
C Example: If the original matrix is
|
|
C
|
|
C 11 12 13 0 0 0
|
|
C 12 22 23 24 0 0
|
|
C 13 23 33 34 35 0
|
|
C 0 24 34 44 45 46
|
|
C 0 0 35 45 55 56
|
|
C 0 0 0 46 56 66
|
|
C
|
|
C then N = 6 , M = 2 and ABD should contain
|
|
C
|
|
C * * 13 24 35 46
|
|
C * 12 23 34 45 56
|
|
C 11 22 33 44 55 66
|
|
C
|
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
|
C***ROUTINES CALLED DASUM, DAXPY, DDOT, DPBFA, DSCAL
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 780814 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE DPBCO
|
|
INTEGER LDA,N,M,INFO
|
|
DOUBLE PRECISION ABD(LDA,*),Z(*)
|
|
DOUBLE PRECISION RCOND
|
|
C
|
|
DOUBLE PRECISION DDOT,EK,T,WK,WKM
|
|
DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
|
|
INTEGER I,J,J2,K,KB,KP1,L,LA,LB,LM,MU
|
|
C
|
|
C FIND NORM OF A
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DPBCO
|
|
DO 30 J = 1, N
|
|
L = MIN(J,M+1)
|
|
MU = MAX(M+2-J,1)
|
|
Z(J) = DASUM(L,ABD(MU,J),1)
|
|
K = J - L
|
|
IF (M .LT. MU) GO TO 20
|
|
DO 10 I = MU, M
|
|
K = K + 1
|
|
Z(K) = Z(K) + ABS(ABD(I,J))
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
ANORM = 0.0D0
|
|
DO 40 J = 1, N
|
|
ANORM = MAX(ANORM,Z(J))
|
|
40 CONTINUE
|
|
C
|
|
C FACTOR
|
|
C
|
|
CALL DPBFA(ABD,LDA,N,M,INFO)
|
|
IF (INFO .NE. 0) GO TO 180
|
|
C
|
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
|
|
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
|
|
C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
|
|
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
|
|
C
|
|
C SOLVE TRANS(R)*W = E
|
|
C
|
|
EK = 1.0D0
|
|
DO 50 J = 1, N
|
|
Z(J) = 0.0D0
|
|
50 CONTINUE
|
|
DO 110 K = 1, N
|
|
IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
|
|
IF (ABS(EK-Z(K)) .LE. ABD(M+1,K)) GO TO 60
|
|
S = ABD(M+1,K)/ABS(EK-Z(K))
|
|
CALL DSCAL(N,S,Z,1)
|
|
EK = S*EK
|
|
60 CONTINUE
|
|
WK = EK - Z(K)
|
|
WKM = -EK - Z(K)
|
|
S = ABS(WK)
|
|
SM = ABS(WKM)
|
|
WK = WK/ABD(M+1,K)
|
|
WKM = WKM/ABD(M+1,K)
|
|
KP1 = K + 1
|
|
J2 = MIN(K+M,N)
|
|
I = M + 1
|
|
IF (KP1 .GT. J2) GO TO 100
|
|
DO 70 J = KP1, J2
|
|
I = I - 1
|
|
SM = SM + ABS(Z(J)+WKM*ABD(I,J))
|
|
Z(J) = Z(J) + WK*ABD(I,J)
|
|
S = S + ABS(Z(J))
|
|
70 CONTINUE
|
|
IF (S .GE. SM) GO TO 90
|
|
T = WKM - WK
|
|
WK = WKM
|
|
I = M + 1
|
|
DO 80 J = KP1, J2
|
|
I = I - 1
|
|
Z(J) = Z(J) + T*ABD(I,J)
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
Z(K) = WK
|
|
110 CONTINUE
|
|
S = 1.0D0/DASUM(N,Z,1)
|
|
CALL DSCAL(N,S,Z,1)
|
|
C
|
|
C SOLVE R*Y = W
|
|
C
|
|
DO 130 KB = 1, N
|
|
K = N + 1 - KB
|
|
IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 120
|
|
S = ABD(M+1,K)/ABS(Z(K))
|
|
CALL DSCAL(N,S,Z,1)
|
|
120 CONTINUE
|
|
Z(K) = Z(K)/ABD(M+1,K)
|
|
LM = MIN(K-1,M)
|
|
LA = M + 1 - LM
|
|
LB = K - LM
|
|
T = -Z(K)
|
|
CALL DAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
|
|
130 CONTINUE
|
|
S = 1.0D0/DASUM(N,Z,1)
|
|
CALL DSCAL(N,S,Z,1)
|
|
C
|
|
YNORM = 1.0D0
|
|
C
|
|
C SOLVE TRANS(R)*V = Y
|
|
C
|
|
DO 150 K = 1, N
|
|
LM = MIN(K-1,M)
|
|
LA = M + 1 - LM
|
|
LB = K - LM
|
|
Z(K) = Z(K) - DDOT(LM,ABD(LA,K),1,Z(LB),1)
|
|
IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 140
|
|
S = ABD(M+1,K)/ABS(Z(K))
|
|
CALL DSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
140 CONTINUE
|
|
Z(K) = Z(K)/ABD(M+1,K)
|
|
150 CONTINUE
|
|
S = 1.0D0/DASUM(N,Z,1)
|
|
CALL DSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
C
|
|
C SOLVE R*Z = W
|
|
C
|
|
DO 170 KB = 1, N
|
|
K = N + 1 - KB
|
|
IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 160
|
|
S = ABD(M+1,K)/ABS(Z(K))
|
|
CALL DSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
160 CONTINUE
|
|
Z(K) = Z(K)/ABD(M+1,K)
|
|
LM = MIN(K-1,M)
|
|
LA = M + 1 - LM
|
|
LB = K - LM
|
|
T = -Z(K)
|
|
CALL DAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
|
|
170 CONTINUE
|
|
C MAKE ZNORM = 1.0
|
|
S = 1.0D0/DASUM(N,Z,1)
|
|
CALL DSCAL(N,S,Z,1)
|
|
YNORM = S*YNORM
|
|
C
|
|
IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
|
|
IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
|
|
180 CONTINUE
|
|
RETURN
|
|
END
|