mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
190 lines
6.9 KiB
Fortran
190 lines
6.9 KiB
Fortran
*DECK DQK15W
|
|
SUBROUTINE DQK15W (F, W, P1, P2, P3, P4, KP, A, B, RESULT, ABSERR,
|
|
+ RESABS, RESASC)
|
|
C***BEGIN PROLOGUE DQK15W
|
|
C***PURPOSE To compute I = Integral of F*W over (A,B), with error
|
|
C estimate
|
|
C J = Integral of ABS(F*W) over (A,B)
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A2
|
|
C***TYPE DOUBLE PRECISION (QK15W-S, DQK15W-D)
|
|
C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules
|
|
C Standard fortran subroutine
|
|
C Double precision version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Double precision
|
|
C Function subprogram defining the integrand
|
|
C function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the driver program.
|
|
C
|
|
C W - Double precision
|
|
C Function subprogram defining the integrand
|
|
C WEIGHT function W(X). The actual name for W
|
|
C needs to be declared E X T E R N A L in the
|
|
C calling program.
|
|
C
|
|
C P1, P2, P3, P4 - Double precision
|
|
C Parameters in the WEIGHT function
|
|
C
|
|
C KP - Integer
|
|
C Key for indicating the type of WEIGHT function
|
|
C
|
|
C A - Double precision
|
|
C Lower limit of integration
|
|
C
|
|
C B - Double precision
|
|
C Upper limit of integration
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Double precision
|
|
C Approximation to the integral I
|
|
C RESULT is computed by applying the 15-point
|
|
C Kronrod rule (RESK) obtained by optimal addition
|
|
C of abscissae to the 7-point Gauss rule (RESG).
|
|
C
|
|
C ABSERR - Double precision
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C RESABS - Double precision
|
|
C Approximation to the integral of ABS(F)
|
|
C
|
|
C RESASC - Double precision
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED D1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 810101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE DQK15W
|
|
C
|
|
DOUBLE PRECISION A,ABSC,ABSC1,ABSC2,ABSERR,B,CENTR,DHLGTH,
|
|
1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,
|
|
2 P1,P2,P3,P4,RESABS,RESASC,RESG,RESK,RESKH,RESULT,UFLOW,W,WG,WGK,
|
|
3 XGK
|
|
INTEGER J,JTW,JTWM1,KP
|
|
EXTERNAL F, W
|
|
C
|
|
DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(4)
|
|
C
|
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
|
C
|
|
C XGK - ABSCISSAE OF THE 15-POINT GAUSS-KRONROD RULE
|
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
|
|
C GAUSS RULE
|
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
|
C ADDED TO THE 7-POINT GAUSS RULE
|
|
C
|
|
C WGK - WEIGHTS OF THE 15-POINT GAUSS-KRONROD RULE
|
|
C
|
|
C WG - WEIGHTS OF THE 7-POINT GAUSS RULE
|
|
C
|
|
SAVE XGK, WGK, WG
|
|
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8)/
|
|
1 0.9914553711208126D+00, 0.9491079123427585D+00,
|
|
2 0.8648644233597691D+00, 0.7415311855993944D+00,
|
|
3 0.5860872354676911D+00, 0.4058451513773972D+00,
|
|
4 0.2077849550078985D+00, 0.0000000000000000D+00/
|
|
C
|
|
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8)/
|
|
1 0.2293532201052922D-01, 0.6309209262997855D-01,
|
|
2 0.1047900103222502D+00, 0.1406532597155259D+00,
|
|
3 0.1690047266392679D+00, 0.1903505780647854D+00,
|
|
4 0.2044329400752989D+00, 0.2094821410847278D+00/
|
|
C
|
|
DATA WG(1),WG(2),WG(3),WG(4)/
|
|
1 0.1294849661688697D+00, 0.2797053914892767D+00,
|
|
2 0.3818300505051889D+00, 0.4179591836734694D+00/
|
|
C
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C CENTR - MID POINT OF THE INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
|
C ABSC* - ABSCISSA
|
|
C FVAL* - FUNCTION VALUE
|
|
C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
|
|
C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
|
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F*W OVER (A,B),
|
|
C I.E. TO I/(B-A)
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DQK15W
|
|
EPMACH = D1MACH(4)
|
|
UFLOW = D1MACH(1)
|
|
C
|
|
CENTR = 0.5D+00*(A+B)
|
|
HLGTH = 0.5D+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
C
|
|
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO THE
|
|
C INTEGRAL, AND ESTIMATE THE ERROR.
|
|
C
|
|
FC = F(CENTR)*W(CENTR,P1,P2,P3,P4,KP)
|
|
RESG = WG(4)*FC
|
|
RESK = WGK(8)*FC
|
|
RESABS = ABS(RESK)
|
|
DO 10 J=1,3
|
|
JTW = J*2
|
|
ABSC = HLGTH*XGK(JTW)
|
|
ABSC1 = CENTR-ABSC
|
|
ABSC2 = CENTR+ABSC
|
|
FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP)
|
|
FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP)
|
|
FV1(JTW) = FVAL1
|
|
FV2(JTW) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESG = RESG+WG(J)*FSUM
|
|
RESK = RESK+WGK(JTW)*FSUM
|
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
|
10 CONTINUE
|
|
DO 15 J=1,4
|
|
JTWM1 = J*2-1
|
|
ABSC = HLGTH*XGK(JTWM1)
|
|
ABSC1 = CENTR-ABSC
|
|
ABSC2 = CENTR+ABSC
|
|
FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP)
|
|
FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP)
|
|
FV1(JTWM1) = FVAL1
|
|
FV2(JTWM1) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESK = RESK+WGK(JTWM1)*FSUM
|
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
|
15 CONTINUE
|
|
RESKH = RESK*0.5D+00
|
|
RESASC = WGK(8)*ABS(FC-RESKH)
|
|
DO 20 J=1,7
|
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
|
20 CONTINUE
|
|
RESULT = RESK*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESASC = RESASC*DHLGTH
|
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
|
IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
|
|
1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
|
|
IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX((EPMACH*
|
|
1 0.5D+02)*RESABS,ABSERR)
|
|
RETURN
|
|
END
|