mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
193 lines
7.3 KiB
Fortran
193 lines
7.3 KiB
Fortran
*DECK DQK21
|
|
SUBROUTINE DQK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
|
|
C***BEGIN PROLOGUE DQK21
|
|
C***PURPOSE To compute I = Integral of F over (A,B), with error
|
|
C estimate
|
|
C J = Integral of ABS(F) over (A,B)
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A1A2
|
|
C***TYPE DOUBLE PRECISION (QK21-S, DQK21-D)
|
|
C***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules
|
|
C Standard fortran subroutine
|
|
C Double precision version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Double precision
|
|
C Function subprogram defining the integrand
|
|
C FUNCTION F(X). The actual name for F needs to be
|
|
C Declared E X T E R N A L in the driver program.
|
|
C
|
|
C A - Double precision
|
|
C Lower limit of integration
|
|
C
|
|
C B - Double precision
|
|
C Upper limit of integration
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Double precision
|
|
C Approximation to the integral I
|
|
C RESULT is computed by applying the 21-POINT
|
|
C KRONROD RULE (RESK) obtained by optimal addition
|
|
C of abscissae to the 10-POINT GAUSS RULE (RESG).
|
|
C
|
|
C ABSERR - Double precision
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should not exceed ABS(I-RESULT)
|
|
C
|
|
C RESABS - Double precision
|
|
C Approximation to the integral J
|
|
C
|
|
C RESASC - Double precision
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C over (A,B)
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED D1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE DQK21
|
|
C
|
|
DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH,
|
|
1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
|
|
2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
|
|
INTEGER J,JTW,JTWM1
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION FV1(10),FV2(10),WG(5),WGK(11),XGK(11)
|
|
C
|
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
|
C
|
|
C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE
|
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT
|
|
C GAUSS RULE
|
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
|
C ADDED TO THE 10-POINT GAUSS RULE
|
|
C
|
|
C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE
|
|
C
|
|
C WG - WEIGHTS OF THE 10-POINT GAUSS RULE
|
|
C
|
|
C
|
|
C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
|
|
C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
|
|
C BELL LABS, NOV. 1981.
|
|
C
|
|
SAVE WG, XGK, WGK
|
|
DATA WG ( 1) / 0.0666713443 0868813759 3568809893 332 D0 /
|
|
DATA WG ( 2) / 0.1494513491 5058059314 5776339657 697 D0 /
|
|
DATA WG ( 3) / 0.2190863625 1598204399 5534934228 163 D0 /
|
|
DATA WG ( 4) / 0.2692667193 0999635509 1226921569 469 D0 /
|
|
DATA WG ( 5) / 0.2955242247 1475287017 3892994651 338 D0 /
|
|
C
|
|
DATA XGK ( 1) / 0.9956571630 2580808073 5527280689 003 D0 /
|
|
DATA XGK ( 2) / 0.9739065285 1717172007 7964012084 452 D0 /
|
|
DATA XGK ( 3) / 0.9301574913 5570822600 1207180059 508 D0 /
|
|
DATA XGK ( 4) / 0.8650633666 8898451073 2096688423 493 D0 /
|
|
DATA XGK ( 5) / 0.7808177265 8641689706 3717578345 042 D0 /
|
|
DATA XGK ( 6) / 0.6794095682 9902440623 4327365114 874 D0 /
|
|
DATA XGK ( 7) / 0.5627571346 6860468333 9000099272 694 D0 /
|
|
DATA XGK ( 8) / 0.4333953941 2924719079 9265943165 784 D0 /
|
|
DATA XGK ( 9) / 0.2943928627 0146019813 1126603103 866 D0 /
|
|
DATA XGK ( 10) / 0.1488743389 8163121088 4826001129 720 D0 /
|
|
DATA XGK ( 11) / 0.0000000000 0000000000 0000000000 000 D0 /
|
|
C
|
|
DATA WGK ( 1) / 0.0116946388 6737187427 8064396062 192 D0 /
|
|
DATA WGK ( 2) / 0.0325581623 0796472747 8818972459 390 D0 /
|
|
DATA WGK ( 3) / 0.0547558965 7435199603 1381300244 580 D0 /
|
|
DATA WGK ( 4) / 0.0750396748 1091995276 7043140916 190 D0 /
|
|
DATA WGK ( 5) / 0.0931254545 8369760553 5065465083 366 D0 /
|
|
DATA WGK ( 6) / 0.1093871588 0229764189 9210590325 805 D0 /
|
|
DATA WGK ( 7) / 0.1234919762 6206585107 7958109831 074 D0 /
|
|
DATA WGK ( 8) / 0.1347092173 1147332592 8054001771 707 D0 /
|
|
DATA WGK ( 9) / 0.1427759385 7706008079 7094273138 717 D0 /
|
|
DATA WGK ( 10) / 0.1477391049 0133849137 4841515972 068 D0 /
|
|
DATA WGK ( 11) / 0.1494455540 0291690566 4936468389 821 D0 /
|
|
C
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C CENTR - MID POINT OF THE INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
|
C ABSC - ABSCISSA
|
|
C FVAL* - FUNCTION VALUE
|
|
C RESG - RESULT OF THE 10-POINT GAUSS FORMULA
|
|
C RESK - RESULT OF THE 21-POINT KRONROD FORMULA
|
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
|
|
C I.E. TO I/(B-A)
|
|
C
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DQK21
|
|
EPMACH = D1MACH(4)
|
|
UFLOW = D1MACH(1)
|
|
C
|
|
CENTR = 0.5D+00*(A+B)
|
|
HLGTH = 0.5D+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
C
|
|
C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO
|
|
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
|
|
C
|
|
RESG = 0.0D+00
|
|
FC = F(CENTR)
|
|
RESK = WGK(11)*FC
|
|
RESABS = ABS(RESK)
|
|
DO 10 J=1,5
|
|
JTW = 2*J
|
|
ABSC = HLGTH*XGK(JTW)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTW) = FVAL1
|
|
FV2(JTW) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESG = RESG+WG(J)*FSUM
|
|
RESK = RESK+WGK(JTW)*FSUM
|
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
|
10 CONTINUE
|
|
DO 15 J = 1,5
|
|
JTWM1 = 2*J-1
|
|
ABSC = HLGTH*XGK(JTWM1)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTWM1) = FVAL1
|
|
FV2(JTWM1) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESK = RESK+WGK(JTWM1)*FSUM
|
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
|
15 CONTINUE
|
|
RESKH = RESK*0.5D+00
|
|
RESASC = WGK(11)*ABS(FC-RESKH)
|
|
DO 20 J=1,10
|
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
|
20 CONTINUE
|
|
RESULT = RESK*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESASC = RESASC*DHLGTH
|
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
|
IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
|
|
1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
|
|
IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
|
|
1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
|
|
RETURN
|
|
END
|