mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
202 lines
8.1 KiB
Fortran
202 lines
8.1 KiB
Fortran
*DECK DQK31
|
|
SUBROUTINE DQK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
|
|
C***BEGIN PROLOGUE DQK31
|
|
C***PURPOSE To compute I = Integral of F over (A,B) with error
|
|
C estimate
|
|
C J = Integral of ABS(F) over (A,B)
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A1A2
|
|
C***TYPE DOUBLE PRECISION (QK31-S, DQK31-D)
|
|
C***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules
|
|
C Standard fortran subroutine
|
|
C Double precision version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Double precision
|
|
C Function subprogram defining the integrand
|
|
C FUNCTION F(X). The actual name for F needs to be
|
|
C Declared E X T E R N A L in the calling program.
|
|
C
|
|
C A - Double precision
|
|
C Lower limit of integration
|
|
C
|
|
C B - Double precision
|
|
C Upper limit of integration
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Double precision
|
|
C Approximation to the integral I
|
|
C RESULT is computed by applying the 31-POINT
|
|
C GAUSS-KRONROD RULE (RESK), obtained by optimal
|
|
C addition of abscissae to the 15-POINT GAUSS
|
|
C RULE (RESG).
|
|
C
|
|
C ABSERR - Double precision
|
|
C Estimate of the modulus of the modulus,
|
|
C which should not exceed ABS(I-RESULT)
|
|
C
|
|
C RESABS - Double precision
|
|
C Approximation to the integral J
|
|
C
|
|
C RESASC - Double precision
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C over (A,B)
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED D1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE DQK31
|
|
DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH,
|
|
1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
|
|
2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
|
|
INTEGER J,JTW,JTWM1
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION FV1(15),FV2(15),XGK(16),WGK(16),WG(8)
|
|
C
|
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
|
C
|
|
C XGK - ABSCISSAE OF THE 31-POINT KRONROD RULE
|
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 15-POINT
|
|
C GAUSS RULE
|
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
|
C ADDED TO THE 15-POINT GAUSS RULE
|
|
C
|
|
C WGK - WEIGHTS OF THE 31-POINT KRONROD RULE
|
|
C
|
|
C WG - WEIGHTS OF THE 15-POINT GAUSS RULE
|
|
C
|
|
C
|
|
C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
|
|
C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
|
|
C BELL LABS, NOV. 1981.
|
|
C
|
|
SAVE WG, XGK, WGK
|
|
DATA WG ( 1) / 0.0307532419 9611726835 4628393577 204 D0 /
|
|
DATA WG ( 2) / 0.0703660474 8810812470 9267416450 667 D0 /
|
|
DATA WG ( 3) / 0.1071592204 6717193501 1869546685 869 D0 /
|
|
DATA WG ( 4) / 0.1395706779 2615431444 7804794511 028 D0 /
|
|
DATA WG ( 5) / 0.1662692058 1699393355 3200860481 209 D0 /
|
|
DATA WG ( 6) / 0.1861610000 1556221102 6800561866 423 D0 /
|
|
DATA WG ( 7) / 0.1984314853 2711157645 6118326443 839 D0 /
|
|
DATA WG ( 8) / 0.2025782419 2556127288 0620199967 519 D0 /
|
|
C
|
|
DATA XGK ( 1) / 0.9980022986 9339706028 5172840152 271 D0 /
|
|
DATA XGK ( 2) / 0.9879925180 2048542848 9565718586 613 D0 /
|
|
DATA XGK ( 3) / 0.9677390756 7913913425 7347978784 337 D0 /
|
|
DATA XGK ( 4) / 0.9372733924 0070590430 7758947710 209 D0 /
|
|
DATA XGK ( 5) / 0.8972645323 4408190088 2509656454 496 D0 /
|
|
DATA XGK ( 6) / 0.8482065834 1042721620 0648320774 217 D0 /
|
|
DATA XGK ( 7) / 0.7904185014 4246593296 7649294817 947 D0 /
|
|
DATA XGK ( 8) / 0.7244177313 6017004741 6186054613 938 D0 /
|
|
DATA XGK ( 9) / 0.6509967412 9741697053 3735895313 275 D0 /
|
|
DATA XGK ( 10) / 0.5709721726 0853884753 7226737253 911 D0 /
|
|
DATA XGK ( 11) / 0.4850818636 4023968069 3655740232 351 D0 /
|
|
DATA XGK ( 12) / 0.3941513470 7756336989 7207370981 045 D0 /
|
|
DATA XGK ( 13) / 0.2991800071 5316881216 6780024266 389 D0 /
|
|
DATA XGK ( 14) / 0.2011940939 9743452230 0628303394 596 D0 /
|
|
DATA XGK ( 15) / 0.1011420669 1871749902 7074231447 392 D0 /
|
|
DATA XGK ( 16) / 0.0000000000 0000000000 0000000000 000 D0 /
|
|
C
|
|
DATA WGK ( 1) / 0.0053774798 7292334898 7792051430 128 D0 /
|
|
DATA WGK ( 2) / 0.0150079473 2931612253 8374763075 807 D0 /
|
|
DATA WGK ( 3) / 0.0254608473 2671532018 6874001019 653 D0 /
|
|
DATA WGK ( 4) / 0.0353463607 9137584622 2037948478 360 D0 /
|
|
DATA WGK ( 5) / 0.0445897513 2476487660 8227299373 280 D0 /
|
|
DATA WGK ( 6) / 0.0534815246 9092808726 5343147239 430 D0 /
|
|
DATA WGK ( 7) / 0.0620095678 0067064028 5139230960 803 D0 /
|
|
DATA WGK ( 8) / 0.0698541213 1872825870 9520077099 147 D0 /
|
|
DATA WGK ( 9) / 0.0768496807 5772037889 4432777482 659 D0 /
|
|
DATA WGK ( 10) / 0.0830805028 2313302103 8289247286 104 D0 /
|
|
DATA WGK ( 11) / 0.0885644430 5621177064 7275443693 774 D0 /
|
|
DATA WGK ( 12) / 0.0931265981 7082532122 5486872747 346 D0 /
|
|
DATA WGK ( 13) / 0.0966427269 8362367850 5179907627 589 D0 /
|
|
DATA WGK ( 14) / 0.0991735987 2179195933 2393173484 603 D0 /
|
|
DATA WGK ( 15) / 0.1007698455 2387559504 4946662617 570 D0 /
|
|
DATA WGK ( 16) / 0.1013300070 1479154901 7374792767 493 D0 /
|
|
C
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C CENTR - MID POINT OF THE INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
|
C ABSC - ABSCISSA
|
|
C FVAL* - FUNCTION VALUE
|
|
C RESG - RESULT OF THE 15-POINT GAUSS FORMULA
|
|
C RESK - RESULT OF THE 31-POINT KRONROD FORMULA
|
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
|
|
C I.E. TO I/(B-A)
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C***FIRST EXECUTABLE STATEMENT DQK31
|
|
EPMACH = D1MACH(4)
|
|
UFLOW = D1MACH(1)
|
|
C
|
|
CENTR = 0.5D+00*(A+B)
|
|
HLGTH = 0.5D+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
C
|
|
C COMPUTE THE 31-POINT KRONROD APPROXIMATION TO
|
|
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
|
|
C
|
|
FC = F(CENTR)
|
|
RESG = WG(8)*FC
|
|
RESK = WGK(16)*FC
|
|
RESABS = ABS(RESK)
|
|
DO 10 J=1,7
|
|
JTW = J*2
|
|
ABSC = HLGTH*XGK(JTW)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTW) = FVAL1
|
|
FV2(JTW) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESG = RESG+WG(J)*FSUM
|
|
RESK = RESK+WGK(JTW)*FSUM
|
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
|
10 CONTINUE
|
|
DO 15 J = 1,8
|
|
JTWM1 = J*2-1
|
|
ABSC = HLGTH*XGK(JTWM1)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTWM1) = FVAL1
|
|
FV2(JTWM1) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESK = RESK+WGK(JTWM1)*FSUM
|
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
|
15 CONTINUE
|
|
RESKH = RESK*0.5D+00
|
|
RESASC = WGK(16)*ABS(FC-RESKH)
|
|
DO 20 J=1,15
|
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
|
20 CONTINUE
|
|
RESULT = RESK*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESASC = RESASC*DHLGTH
|
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
|
IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
|
|
1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
|
|
IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
|
|
1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
|
|
RETURN
|
|
END
|