mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
411 lines
13 KiB
Fortran
411 lines
13 KiB
Fortran
*DECK DRD
|
|
DOUBLE PRECISION FUNCTION DRD (X, Y, Z, IER)
|
|
C***BEGIN PROLOGUE DRD
|
|
C***PURPOSE Compute the incomplete or complete elliptic integral of
|
|
C the 2nd kind. For X and Y nonnegative, X+Y and Z positive,
|
|
C DRD(X,Y,Z) = Integral from zero to infinity of
|
|
C -1/2 -1/2 -3/2
|
|
C (3/2)(t+X) (t+Y) (t+Z) dt.
|
|
C If X or Y is zero, the integral is complete.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY C14
|
|
C***TYPE DOUBLE PRECISION (RD-S, DRD-D)
|
|
C***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
|
|
C INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE SECOND KIND,
|
|
C TAYLOR SERIES
|
|
C***AUTHOR Carlson, B. C.
|
|
C Ames Laboratory-DOE
|
|
C Iowa State University
|
|
C Ames, IA 50011
|
|
C Notis, E. M.
|
|
C Ames Laboratory-DOE
|
|
C Iowa State University
|
|
C Ames, IA 50011
|
|
C Pexton, R. L.
|
|
C Lawrence Livermore National Laboratory
|
|
C Livermore, CA 94550
|
|
C***DESCRIPTION
|
|
C
|
|
C 1. DRD
|
|
C Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
|
|
C of the second kind
|
|
C Standard FORTRAN function routine
|
|
C Double precision version
|
|
C The routine calculates an approximation result to
|
|
C DRD(X,Y,Z) = Integral from zero to infinity of
|
|
C -1/2 -1/2 -3/2
|
|
C (3/2)(t+X) (t+Y) (t+Z) dt,
|
|
C where X and Y are nonnegative, X + Y is positive, and Z is
|
|
C positive. If X or Y is zero, the integral is COMPLETE.
|
|
C The duplication theorem is iterated until the variables are
|
|
C nearly equal, and the function is then expanded in Taylor
|
|
C series to fifth order.
|
|
C
|
|
C 2. Calling Sequence
|
|
C
|
|
C DRD( X, Y, Z, IER )
|
|
C
|
|
C Parameters On Entry
|
|
C Values assigned by the calling routine
|
|
C
|
|
C X - Double precision, nonnegative variable
|
|
C
|
|
C Y - Double precision, nonnegative variable
|
|
C
|
|
C X + Y is positive
|
|
C
|
|
C Z - Double precision, positive variable
|
|
C
|
|
C
|
|
C
|
|
C On Return (values assigned by the DRD routine)
|
|
C
|
|
C DRD - Double precision approximation to the integral
|
|
C
|
|
C
|
|
C IER - Integer
|
|
C
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C
|
|
C IER > 0 Abnormal termination of the routine
|
|
C
|
|
C
|
|
C X, Y, Z are unaltered.
|
|
C
|
|
C 3. Error Messages
|
|
C
|
|
C Value of IER assigned by the DRD routine
|
|
C
|
|
C Value assigned Error message printed
|
|
C IER = 1 MIN(X,Y) .LT. 0.0D0
|
|
C = 2 MIN(X + Y, Z ) .LT. LOLIM
|
|
C = 3 MAX(X,Y,Z) .GT. UPLIM
|
|
C
|
|
C
|
|
C 4. Control Parameters
|
|
C
|
|
C Values of LOLIM, UPLIM, and ERRTOL are set by the
|
|
C routine.
|
|
C
|
|
C LOLIM and UPLIM determine the valid range of X, Y, and Z
|
|
C
|
|
C LOLIM - Lower limit of valid arguments
|
|
C
|
|
C Not less than 2 / (machine maximum) ** (2/3).
|
|
C
|
|
C UPLIM - Upper limit of valid arguments
|
|
C
|
|
C Not greater than (0.1D0 * ERRTOL / machine
|
|
C minimum) ** (2/3), where ERRTOL is described below.
|
|
C In the following table it is assumed that ERRTOL will
|
|
C never be chosen smaller than 1.0D-5.
|
|
C
|
|
C
|
|
C Acceptable values for: LOLIM UPLIM
|
|
C IBM 360/370 SERIES : 6.0D-51 1.0D+48
|
|
C CDC 6000/7000 SERIES : 5.0D-215 2.0D+191
|
|
C UNIVAC 1100 SERIES : 1.0D-205 2.0D+201
|
|
C CRAY : 3.0D-1644 1.69D+1640
|
|
C VAX 11 SERIES : 1.0D-25 4.5D+21
|
|
C
|
|
C
|
|
C ERRTOL determines the accuracy of the answer
|
|
C
|
|
C The value assigned by the routine will result
|
|
C in solution precision within 1-2 decimals of
|
|
C "machine precision".
|
|
C
|
|
C ERRTOL Relative error due to truncation is less than
|
|
C 3 * ERRTOL ** 6 / (1-ERRTOL) ** 3/2.
|
|
C
|
|
C
|
|
C
|
|
C The accuracy of the computed approximation to the integral
|
|
C can be controlled by choosing the value of ERRTOL.
|
|
C Truncation of a Taylor series after terms of fifth order
|
|
C introduces an error less than the amount shown in the
|
|
C second column of the following table for each value of
|
|
C ERRTOL in the first column. In addition to the truncation
|
|
C error there will be round-off error, but in practice the
|
|
C total error from both sources is usually less than the
|
|
C amount given in the table.
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C Sample choices: ERRTOL Relative truncation
|
|
C error less than
|
|
C 1.0D-3 4.0D-18
|
|
C 3.0D-3 3.0D-15
|
|
C 1.0D-2 4.0D-12
|
|
C 3.0D-2 3.0D-9
|
|
C 1.0D-1 4.0D-6
|
|
C
|
|
C
|
|
C Decreasing ERRTOL by a factor of 10 yields six more
|
|
C decimal digits of accuracy at the expense of one or
|
|
C two more iterations of the duplication theorem.
|
|
C
|
|
C *Long Description:
|
|
C
|
|
C DRD Special Comments
|
|
C
|
|
C
|
|
C
|
|
C Check: DRD(X,Y,Z) + DRD(Y,Z,X) + DRD(Z,X,Y)
|
|
C = 3 / SQRT(X * Y * Z), where X, Y, and Z are positive.
|
|
C
|
|
C
|
|
C On Input:
|
|
C
|
|
C X, Y, and Z are the variables in the integral DRD(X,Y,Z).
|
|
C
|
|
C
|
|
C On Output:
|
|
C
|
|
C
|
|
C X, Y, Z are unaltered.
|
|
C
|
|
C
|
|
C
|
|
C ********************************************************
|
|
C
|
|
C WARNING: Changes in the program may improve speed at the
|
|
C expense of robustness.
|
|
C
|
|
C
|
|
C
|
|
C -------------------------------------------------------------------
|
|
C
|
|
C
|
|
C Special double precision functions via DRD and DRF
|
|
C
|
|
C
|
|
C Legendre form of ELLIPTIC INTEGRAL of 2nd kind
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C
|
|
C 2 2 2
|
|
C E(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1) -
|
|
C
|
|
C 2 3 2 2 2
|
|
C -(K/3) SIN (PHI) DRD(COS (PHI),1-K SIN (PHI),1)
|
|
C
|
|
C
|
|
C 2 2 2
|
|
C E(K) = DRF(0,1-K ,1) - (K/3) DRD(0,1-K ,1)
|
|
C
|
|
C PI/2 2 2 1/2
|
|
C = INT (1-K SIN (PHI) ) D PHI
|
|
C 0
|
|
C
|
|
C Bulirsch form of ELLIPTIC INTEGRAL of 2nd kind
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C 2 2 2
|
|
C EL2(X,KC,A,B) = AX DRF(1,1+KC X ,1+X ) +
|
|
C
|
|
C 3 2 2 2
|
|
C +(1/3)(B-A) X DRD(1,1+KC X ,1+X )
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C Legendre form of alternative ELLIPTIC INTEGRAL
|
|
C of 2nd kind
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C
|
|
C
|
|
C Q 2 2 2 -1/2
|
|
C D(Q,K) = INT SIN P (1-K SIN P) DP
|
|
C 0
|
|
C
|
|
C
|
|
C
|
|
C 3 2 2 2
|
|
C D(Q,K) = (1/3) (SIN Q) DRD(COS Q,1-K SIN Q,1)
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C Lemniscate constant B
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C
|
|
C
|
|
C
|
|
C 1 2 4 -1/2
|
|
C B = INT S (1-S ) DS
|
|
C 0
|
|
C
|
|
C
|
|
C B = (1/3) DRD (0,2,1)
|
|
C
|
|
C
|
|
C Heuman's LAMBDA function
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C
|
|
C
|
|
C (PI/2) LAMBDA0(A,B) =
|
|
C
|
|
C 2 2
|
|
C = SIN(B) (DRF(0,COS (A),1)-(1/3) SIN (A) *
|
|
C
|
|
C 2 2 2 2
|
|
C *DRD(0,COS (A),1)) DRF(COS (B),1-COS (A) SIN (B),1)
|
|
C
|
|
C 2 3 2
|
|
C -(1/3) COS (A) SIN (B) DRF(0,COS (A),1) *
|
|
C
|
|
C 2 2 2
|
|
C *DRD(COS (B),1-COS (A) SIN (B),1)
|
|
C
|
|
C
|
|
C
|
|
C Jacobi ZETA function
|
|
C
|
|
C -----------------------------------------
|
|
C
|
|
C 2 2 2 2
|
|
C Z(B,K) = (K/3) SIN(B) DRF(COS (B),1-K SIN (B),1)
|
|
C
|
|
C
|
|
C 2 2
|
|
C *DRD(0,1-K ,1)/DRF(0,1-K ,1)
|
|
C
|
|
C 2 3 2 2 2
|
|
C -(K /3) SIN (B) DRD(COS (B),1-K SIN (B),1)
|
|
C
|
|
C
|
|
C ---------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
|
|
C elliptic integrals, ACM Transactions on Mathematical
|
|
C Software 7, 3 (September 1981), pp. 398-403.
|
|
C B. C. Carlson, Computing elliptic integrals by
|
|
C duplication, Numerische Mathematik 33, (1979),
|
|
C pp. 1-16.
|
|
C B. C. Carlson, Elliptic integrals of the first kind,
|
|
C SIAM Journal of Mathematical Analysis 8, (1977),
|
|
C pp. 231-242.
|
|
C***ROUTINES CALLED D1MACH, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 790801 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
|
C (WRB)
|
|
C 900510 Modify calls to XERMSG to put in standard form. (RWC)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE DRD
|
|
CHARACTER*16 XERN3, XERN4, XERN5, XERN6
|
|
INTEGER IER
|
|
DOUBLE PRECISION LOLIM, TUPLIM, UPLIM, EPSLON, ERRTOL, D1MACH
|
|
DOUBLE PRECISION C1, C2, C3, C4, EA, EB, EC, ED, EF, LAMDA
|
|
DOUBLE PRECISION MU, POWER4, SIGMA, S1, S2, X, XN, XNDEV
|
|
DOUBLE PRECISION XNROOT, Y, YN, YNDEV, YNROOT, Z, ZN, ZNDEV,
|
|
* ZNROOT
|
|
LOGICAL FIRST
|
|
SAVE ERRTOL, LOLIM, UPLIM, C1, C2, C3, C4, FIRST
|
|
DATA FIRST /.TRUE./
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT DRD
|
|
IF (FIRST) THEN
|
|
ERRTOL = (D1MACH(3)/3.0D0)**(1.0D0/6.0D0)
|
|
LOLIM = 2.0D0/(D1MACH(2))**(2.0D0/3.0D0)
|
|
TUPLIM = D1MACH(1)**(1.0E0/3.0E0)
|
|
TUPLIM = (0.10D0*ERRTOL)**(1.0E0/3.0E0)/TUPLIM
|
|
UPLIM = TUPLIM**2.0D0
|
|
C
|
|
C1 = 3.0D0/14.0D0
|
|
C2 = 1.0D0/6.0D0
|
|
C3 = 9.0D0/22.0D0
|
|
C4 = 3.0D0/26.0D0
|
|
ENDIF
|
|
FIRST = .FALSE.
|
|
C
|
|
C CALL ERROR HANDLER IF NECESSARY.
|
|
C
|
|
DRD = 0.0D0
|
|
IF( MIN(X,Y).LT.0.0D0) THEN
|
|
IER = 1
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
CALL XERMSG ('SLATEC', 'DRD',
|
|
* 'MIN(X,Y).LT.0 WHERE X = ' // XERN3 // ' AND Y = ' //
|
|
* XERN4, 1, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IF (MAX(X,Y,Z).GT.UPLIM) THEN
|
|
IER = 3
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
WRITE (XERN5, '(1PE15.6)') Z
|
|
WRITE (XERN6, '(1PE15.6)') UPLIM
|
|
CALL XERMSG ('SLATEC', 'DRD',
|
|
* 'MAX(X,Y,Z).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
|
|
* XERN4 // ' Z = ' // XERN5 // ' AND UPLIM = ' // XERN6,
|
|
* 3, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IF (MIN(X+Y,Z).LT.LOLIM) THEN
|
|
IER = 2
|
|
WRITE (XERN3, '(1PE15.6)') X
|
|
WRITE (XERN4, '(1PE15.6)') Y
|
|
WRITE (XERN5, '(1PE15.6)') Z
|
|
WRITE (XERN6, '(1PE15.6)') LOLIM
|
|
CALL XERMSG ('SLATEC', 'DRD',
|
|
* 'MIN(X+Y,Z).LT.LOLIM WHERE X = ' // XERN3 // ' Y = ' //
|
|
* XERN4 // ' Z = ' // XERN5 // ' AND LOLIM = ' // XERN6,
|
|
* 2, 1)
|
|
RETURN
|
|
ENDIF
|
|
C
|
|
IER = 0
|
|
XN = X
|
|
YN = Y
|
|
ZN = Z
|
|
SIGMA = 0.0D0
|
|
POWER4 = 1.0D0
|
|
C
|
|
30 MU = (XN+YN+3.0D0*ZN)*0.20D0
|
|
XNDEV = (MU-XN)/MU
|
|
YNDEV = (MU-YN)/MU
|
|
ZNDEV = (MU-ZN)/MU
|
|
EPSLON = MAX(ABS(XNDEV), ABS(YNDEV), ABS(ZNDEV))
|
|
IF (EPSLON.LT.ERRTOL) GO TO 40
|
|
XNROOT = SQRT(XN)
|
|
YNROOT = SQRT(YN)
|
|
ZNROOT = SQRT(ZN)
|
|
LAMDA = XNROOT*(YNROOT+ZNROOT) + YNROOT*ZNROOT
|
|
SIGMA = SIGMA + POWER4/(ZNROOT*(ZN+LAMDA))
|
|
POWER4 = POWER4*0.250D0
|
|
XN = (XN+LAMDA)*0.250D0
|
|
YN = (YN+LAMDA)*0.250D0
|
|
ZN = (ZN+LAMDA)*0.250D0
|
|
GO TO 30
|
|
C
|
|
40 EA = XNDEV*YNDEV
|
|
EB = ZNDEV*ZNDEV
|
|
EC = EA - EB
|
|
ED = EA - 6.0D0*EB
|
|
EF = ED + EC + EC
|
|
S1 = ED*(-C1+0.250D0*C3*ED-1.50D0*C4*ZNDEV*EF)
|
|
S2 = ZNDEV*(C2*EF+ZNDEV*(-C3*EC+ZNDEV*C4*EA))
|
|
DRD = 3.0D0*SIGMA + POWER4*(1.0D0+S1+S2)/(MU*SQRT(MU))
|
|
C
|
|
RETURN
|
|
END
|