mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
127 lines
4 KiB
Fortran
127 lines
4 KiB
Fortran
*DECK GAMIC
|
|
REAL FUNCTION GAMIC (A, X)
|
|
C***BEGIN PROLOGUE GAMIC
|
|
C***PURPOSE Calculate the complementary incomplete Gamma function.
|
|
C***LIBRARY SLATEC (FNLIB)
|
|
C***CATEGORY C7E
|
|
C***TYPE SINGLE PRECISION (GAMIC-S, DGAMIC-D)
|
|
C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
|
|
C SPECIAL FUNCTIONS
|
|
C***AUTHOR Fullerton, W., (LANL)
|
|
C***DESCRIPTION
|
|
C
|
|
C Evaluate the complementary incomplete gamma function
|
|
C
|
|
C GAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .
|
|
C
|
|
C GAMIC is evaluated for arbitrary real values of A and for non-
|
|
C negative values of X (even though GAMIC is defined for X .LT.
|
|
C 0.0), except that for X = 0 and A .LE. 0.0, GAMIC is undefined.
|
|
C
|
|
C GAMIC, A, and X are REAL.
|
|
C
|
|
C A slight deterioration of 2 or 3 digits accuracy will occur when
|
|
C GAMIC is very large or very small in absolute value, because log-
|
|
C arithmic variables are used. Also, if the parameter A is very close
|
|
C to a negative integer (but not a negative integer), there is a loss
|
|
C of accuracy, which is reported if the result is less than half
|
|
C machine precision.
|
|
C
|
|
C***REFERENCES W. Gautschi, A computational procedure for incomplete
|
|
C gamma functions, ACM Transactions on Mathematical
|
|
C Software 5, 4 (December 1979), pp. 466-481.
|
|
C W. Gautschi, Incomplete gamma functions, Algorithm 542,
|
|
C ACM Transactions on Mathematical Software 5, 4
|
|
C (December 1979), pp. 482-489.
|
|
C***ROUTINES CALLED ALGAMS, ALNGAM, R1MACH, R9GMIC, R9GMIT, R9LGIC,
|
|
C R9LGIT, XERCLR, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 770701 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
|
|
C***END PROLOGUE GAMIC
|
|
LOGICAL FIRST
|
|
SAVE EPS, SQEPS, ALNEPS, BOT, FIRST
|
|
DATA FIRST /.TRUE./
|
|
C***FIRST EXECUTABLE STATEMENT GAMIC
|
|
IF (FIRST) THEN
|
|
EPS = 0.5*R1MACH(3)
|
|
SQEPS = SQRT(R1MACH(4))
|
|
ALNEPS = -LOG(R1MACH(3))
|
|
BOT = LOG(R1MACH(1))
|
|
ENDIF
|
|
FIRST = .FALSE.
|
|
C
|
|
IF (X .LT. 0.0) CALL XERMSG ('SLATEC', 'GAMIC', 'X IS NEGATIVE',
|
|
+ 2, 2)
|
|
C
|
|
IF (X.GT.0.0) GO TO 20
|
|
IF (A .LE. 0.0) CALL XERMSG ('SLATEC', 'GAMIC',
|
|
+ 'X = 0 AND A LE 0 SO GAMIC IS UNDEFINED', 3, 2)
|
|
C
|
|
GAMIC = EXP (ALNGAM(A+1.0) - LOG(A))
|
|
RETURN
|
|
C
|
|
20 ALX = LOG(X)
|
|
SGA = 1.0
|
|
IF (A.NE.0.0) SGA = SIGN (1.0, A)
|
|
MA = A + 0.5*SGA
|
|
AEPS = A - MA
|
|
C
|
|
IZERO = 0
|
|
IF (X.GE.1.0) GO TO 60
|
|
C
|
|
IF (A.GT.0.5 .OR. ABS(AEPS).GT.0.001) GO TO 50
|
|
FM = -MA
|
|
E = 2.0
|
|
IF (FM.GT.1.0) E = 2.0*(FM+2.0)/(FM*FM-1.0)
|
|
E = E - ALX*X**(-0.001)
|
|
IF (E*ABS(AEPS).GT.EPS) GO TO 50
|
|
C
|
|
GAMIC = R9GMIC (A, X, ALX)
|
|
RETURN
|
|
C
|
|
50 CALL ALGAMS (A+1.0, ALGAP1, SGNGAM)
|
|
GSTAR = R9GMIT (A, X, ALGAP1, SGNGAM, ALX)
|
|
IF (GSTAR.EQ.0.0) IZERO = 1
|
|
IF (GSTAR.NE.0.0) ALNGS = LOG (ABS(GSTAR))
|
|
IF (GSTAR.NE.0.0) SGNGS = SIGN (1.0, GSTAR)
|
|
GO TO 70
|
|
C
|
|
60 IF (A.LT.X) GAMIC = EXP (R9LGIC(A, X, ALX))
|
|
IF (A.LT.X) RETURN
|
|
C
|
|
SGNGAM = 1.0
|
|
ALGAP1 = ALNGAM (A+1.0)
|
|
SGNGS = 1.0
|
|
ALNGS = R9LGIT (A, X, ALGAP1)
|
|
C
|
|
C EVALUATION OF GAMIC(A,X) IN TERMS OF TRICOMI-S INCOMPLETE GAMMA FN.
|
|
C
|
|
70 H = 1.0
|
|
IF (IZERO.EQ.1) GO TO 80
|
|
C
|
|
T = A*ALX + ALNGS
|
|
IF (T.GT.ALNEPS) GO TO 90
|
|
IF (T.GT.(-ALNEPS)) H = 1.0 - SGNGS*EXP(T)
|
|
C
|
|
IF (ABS(H).LT.SQEPS) CALL XERCLR
|
|
IF (ABS(H) .LT. SQEPS) CALL XERMSG ('SLATEC', 'GAMIC',
|
|
+ 'RESULT LT HALF PRECISION', 1, 1)
|
|
C
|
|
80 SGNG = SIGN (1.0, H) * SGA * SGNGAM
|
|
T = LOG(ABS(H)) + ALGAP1 - LOG(ABS(A))
|
|
IF (T.LT.BOT) CALL XERCLR
|
|
GAMIC = SGNG * EXP(T)
|
|
RETURN
|
|
C
|
|
90 SGNG = -SGNGS * SGA * SGNGAM
|
|
T = T + ALGAP1 - LOG(ABS(A))
|
|
IF (T.LT.BOT) CALL XERCLR
|
|
GAMIC = SGNG * EXP(T)
|
|
RETURN
|
|
C
|
|
END
|