mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
158 lines
5.3 KiB
Fortran
158 lines
5.3 KiB
Fortran
*DECK HKSEQ
|
|
SUBROUTINE HKSEQ (X, M, H, IERR)
|
|
C***BEGIN PROLOGUE HKSEQ
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Subsidiary to BSKIN
|
|
C***LIBRARY SLATEC
|
|
C***TYPE SINGLE PRECISION (HKSEQ-S, DHKSEQ-D)
|
|
C***AUTHOR Amos, D. E., (SNLA)
|
|
C***DESCRIPTION
|
|
C
|
|
C HKSEQ is an adaptation of subroutine PSIFN described in the
|
|
C reference below. HKSEQ generates the sequence
|
|
C H(K,X) = (-X)**(K+1)*(PSI(K,X) PSI(K,X+0.5))/GAMMA(K+1), for
|
|
C K=0,...,M.
|
|
C
|
|
C***SEE ALSO BSKIN
|
|
C***REFERENCES D. E. Amos, A portable Fortran subroutine for
|
|
C derivatives of the Psi function, Algorithm 610, ACM
|
|
C Transactions on Mathematical Software 9, 4 (1983),
|
|
C pp. 494-502.
|
|
C***ROUTINES CALLED I1MACH, R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 820601 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900328 Added TYPE section. (WRB)
|
|
C 910722 Updated AUTHOR section. (ALS)
|
|
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
|
|
C***END PROLOGUE HKSEQ
|
|
INTEGER I, IERR, J, K, M, MX, NX
|
|
INTEGER I1MACH
|
|
REAL B, FK, FLN, FN, FNP, H, HRX, RLN, RXSQ, R1M5, S, SLOPE, T,
|
|
* TK, TRM, TRMH, TRMR, TST, U, V, WDTOL, X, XDMY, XH, XINC, XM,
|
|
* XMIN, YINT
|
|
REAL R1MACH
|
|
DIMENSION B(22), TRM(22), TRMR(25), TRMH(25), U(25), V(25), H(*)
|
|
SAVE B
|
|
C-----------------------------------------------------------------------
|
|
C SCALED BERNOULLI NUMBERS 2.0*B(2K)*(1-2**(-2K))
|
|
C-----------------------------------------------------------------------
|
|
DATA B(1), B(2), B(3), B(4), B(5), B(6), B(7), B(8), B(9), B(10),
|
|
* B(11), B(12), B(13), B(14), B(15), B(16), B(17), B(18), B(19),
|
|
* B(20), B(21), B(22) /1.00000000000000000E+00,
|
|
* -5.00000000000000000E-01,2.50000000000000000E-01,
|
|
* -6.25000000000000000E-02,4.68750000000000000E-02,
|
|
* -6.64062500000000000E-02,1.51367187500000000E-01,
|
|
* -5.06103515625000000E-01,2.33319091796875000E+00,
|
|
* -1.41840972900390625E+01,1.09941936492919922E+02,
|
|
* -1.05824747562408447E+03,1.23842434241771698E+04,
|
|
* -1.73160495905935764E+05,2.85103429084961116E+06,
|
|
* -5.45964619322445132E+07,1.20316174668075304E+09,
|
|
* -3.02326315271452307E+10,8.59229286072319606E+11,
|
|
* -2.74233104097776039E+13,9.76664637943633248E+14,
|
|
* -3.85931586838450360E+16/
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT HKSEQ
|
|
IERR=0
|
|
WDTOL = MAX(R1MACH(4),1.0E-18)
|
|
FN = M - 1
|
|
FNP = FN + 1.0E0
|
|
C-----------------------------------------------------------------------
|
|
C COMPUTE XMIN
|
|
C-----------------------------------------------------------------------
|
|
R1M5 = R1MACH(5)
|
|
RLN = R1M5*I1MACH(11)
|
|
RLN = MIN(RLN,18.06E0)
|
|
FLN = MAX(RLN,3.0E0) - 3.0E0
|
|
YINT = 3.50E0 + 0.40E0*FLN
|
|
SLOPE = 0.21E0 + FLN*(0.0006038E0*FLN+0.008677E0)
|
|
XM = YINT + SLOPE*FN
|
|
MX = INT(XM) + 1
|
|
XMIN = MX
|
|
C-----------------------------------------------------------------------
|
|
C GENERATE H(M-1,XDMY)*XDMY**(M) BY THE ASYMPTOTIC EXPANSION
|
|
C-----------------------------------------------------------------------
|
|
XDMY = X
|
|
XINC = 0.0E0
|
|
IF (X.GE.XMIN) GO TO 10
|
|
NX = INT(X)
|
|
XINC = XMIN - NX
|
|
XDMY = X + XINC
|
|
10 CONTINUE
|
|
RXSQ = 1.0E0/(XDMY*XDMY)
|
|
HRX = 0.5E0/XDMY
|
|
TST = 0.5E0*WDTOL
|
|
T = FNP*HRX
|
|
C-----------------------------------------------------------------------
|
|
C INITIALIZE COEFFICIENT ARRAY
|
|
C-----------------------------------------------------------------------
|
|
S = T*B(3)
|
|
IF (ABS(S).LT.TST) GO TO 30
|
|
TK = 2.0E0
|
|
DO 20 K=4,22
|
|
T = T*((TK+FN+1.0E0)/(TK+1.0E0))*((TK+FN)/(TK+2.0E0))*RXSQ
|
|
TRM(K) = T*B(K)
|
|
IF (ABS(TRM(K)).LT.TST) GO TO 30
|
|
S = S + TRM(K)
|
|
TK = TK + 2.0E0
|
|
20 CONTINUE
|
|
GO TO 110
|
|
30 CONTINUE
|
|
H(M) = S + 0.5E0
|
|
IF (M.EQ.1) GO TO 70
|
|
C-----------------------------------------------------------------------
|
|
C GENERATE LOWER DERIVATIVES, I.LT.M-1
|
|
C-----------------------------------------------------------------------
|
|
DO 60 I=2,M
|
|
FNP = FN
|
|
FN = FN - 1.0E0
|
|
S = FNP*HRX*B(3)
|
|
IF (ABS(S).LT.TST) GO TO 50
|
|
FK = FNP + 3.0E0
|
|
DO 40 K=4,22
|
|
TRM(K) = TRM(K)*FNP/FK
|
|
IF (ABS(TRM(K)).LT.TST) GO TO 50
|
|
S = S + TRM(K)
|
|
FK = FK + 2.0E0
|
|
40 CONTINUE
|
|
GO TO 110
|
|
50 CONTINUE
|
|
MX = M - I + 1
|
|
H(MX) = S + 0.5E0
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
IF (XINC.EQ.0.0E0) RETURN
|
|
C-----------------------------------------------------------------------
|
|
C RECUR BACKWARD FROM XDMY TO X
|
|
C-----------------------------------------------------------------------
|
|
XH = X + 0.5E0
|
|
S = 0.0E0
|
|
NX = INT(XINC)
|
|
DO 80 I=1,NX
|
|
TRMR(I) = X/(X+NX-I)
|
|
U(I) = TRMR(I)
|
|
TRMH(I) = X/(XH+NX-I)
|
|
V(I) = TRMH(I)
|
|
S = S + U(I) - V(I)
|
|
80 CONTINUE
|
|
MX = NX + 1
|
|
TRMR(MX) = X/XDMY
|
|
U(MX) = TRMR(MX)
|
|
H(1) = H(1)*TRMR(MX) + S
|
|
IF (M.EQ.1) RETURN
|
|
DO 100 J=2,M
|
|
S = 0.0E0
|
|
DO 90 I=1,NX
|
|
TRMR(I) = TRMR(I)*U(I)
|
|
TRMH(I) = TRMH(I)*V(I)
|
|
S = S + TRMR(I) - TRMH(I)
|
|
90 CONTINUE
|
|
TRMR(MX) = TRMR(MX)*U(MX)
|
|
H(J) = H(J)*TRMR(MX) + S
|
|
100 CONTINUE
|
|
RETURN
|
|
110 CONTINUE
|
|
IERR=2
|
|
RETURN
|
|
END
|