mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
185 lines
6.2 KiB
Fortran
185 lines
6.2 KiB
Fortran
*DECK IMTQLV
|
|
SUBROUTINE IMTQLV (N, D, E, E2, W, IND, IERR, RV1)
|
|
C***BEGIN PROLOGUE IMTQLV
|
|
C***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
|
|
C using the implicit QL method. Eigenvectors may be computed
|
|
C later.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4A5, D4C2A
|
|
C***TYPE SINGLE PRECISION (IMTQLV-S)
|
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a variant of IMTQL1 which is a translation of
|
|
C ALGOL procedure IMTQL1, NUM. MATH. 12, 377-383(1968) by Martin and
|
|
C Wilkinson, as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
|
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
|
|
C
|
|
C This subroutine finds the eigenvalues of a SYMMETRIC TRIDIAGONAL
|
|
C matrix by the implicit QL method and associates with them
|
|
C their corresponding submatrix indices.
|
|
C
|
|
C On INPUT
|
|
C
|
|
C N is the order of the matrix. N is an INTEGER variable.
|
|
C
|
|
C D contains the diagonal elements of the symmetric tridiagonal
|
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
|
C
|
|
C E contains the subdiagonal elements of the symmetric
|
|
C tridiagonal matrix in its last N-1 positions. E(1) is
|
|
C arbitrary. E is a one-dimensional REAL array, dimensioned
|
|
C E(N).
|
|
C
|
|
C E2 contains the squares of the corresponding elements of E in
|
|
C its last N-1 positions. E2(1) is arbitrary. E2 is a one-
|
|
C dimensional REAL array, dimensioned E2(N).
|
|
C
|
|
C On OUTPUT
|
|
C
|
|
C D and E are unaltered.
|
|
C
|
|
C Elements of E2, corresponding to elements of E regarded as
|
|
C negligible, have been replaced by zero causing the matrix to
|
|
C split into a direct sum of submatrices. E2(1) is also set
|
|
C to zero.
|
|
C
|
|
C W contains the eigenvalues in ascending order. If an error
|
|
C exit is made, the eigenvalues are correct and ordered for
|
|
C indices 1, 2, ..., IERR-1, but may not be the smallest
|
|
C eigenvalues. W is a one-dimensional REAL array, dimensioned
|
|
C W(N).
|
|
C
|
|
C IND contains the submatrix indices associated with the
|
|
C corresponding eigenvalues in W -- 1 for eigenvalues belonging
|
|
C to the first submatrix from the top, 2 for those belonging to
|
|
C the second submatrix, etc. IND is a one-dimensional REAL
|
|
C array, dimensioned IND(N).
|
|
C
|
|
C IERR is an INTEGER flag set to
|
|
C Zero for normal return,
|
|
C J if the J-th eigenvalue has not been
|
|
C determined after 30 iterations.
|
|
C The eigenvalues should be correct for indices
|
|
C 1, 2, ..., IERR-1. These eigenvalues are
|
|
C ordered, but are not necessarily the smallest.
|
|
C
|
|
C RV1 is a one-dimensional REAL array used for temporary storage,
|
|
C dimensioned RV1(N).
|
|
C
|
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C***ROUTINES CALLED PYTHAG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE IMTQLV
|
|
C
|
|
INTEGER I,J,K,L,M,N,II,MML,TAG,IERR
|
|
REAL D(*),E(*),E2(*),W(*),RV1(*)
|
|
REAL B,C,F,G,P,R,S,S1,S2
|
|
REAL PYTHAG
|
|
INTEGER IND(*)
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT IMTQLV
|
|
IERR = 0
|
|
K = 0
|
|
TAG = 0
|
|
C
|
|
DO 100 I = 1, N
|
|
W(I) = D(I)
|
|
IF (I .NE. 1) RV1(I-1) = E(I)
|
|
100 CONTINUE
|
|
C
|
|
E2(1) = 0.0E0
|
|
RV1(N) = 0.0E0
|
|
C
|
|
DO 290 L = 1, N
|
|
J = 0
|
|
C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
|
|
105 DO 110 M = L, N
|
|
IF (M .EQ. N) GO TO 120
|
|
S1 = ABS(W(M)) + ABS(W(M+1))
|
|
S2 = S1 + ABS(RV1(M))
|
|
IF (S2 .EQ. S1) GO TO 120
|
|
C .......... GUARD AGAINST UNDERFLOWED ELEMENT OF E2 ..........
|
|
IF (E2(M+1) .EQ. 0.0E0) GO TO 125
|
|
110 CONTINUE
|
|
C
|
|
120 IF (M .LE. K) GO TO 130
|
|
IF (M .NE. N) E2(M+1) = 0.0E0
|
|
125 K = M
|
|
TAG = TAG + 1
|
|
130 P = W(L)
|
|
IF (M .EQ. L) GO TO 215
|
|
IF (J .EQ. 30) GO TO 1000
|
|
J = J + 1
|
|
C .......... FORM SHIFT ..........
|
|
G = (W(L+1) - P) / (2.0E0 * RV1(L))
|
|
R = PYTHAG(G,1.0E0)
|
|
G = W(M) - P + RV1(L) / (G + SIGN(R,G))
|
|
S = 1.0E0
|
|
C = 1.0E0
|
|
P = 0.0E0
|
|
MML = M - L
|
|
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
|
|
DO 200 II = 1, MML
|
|
I = M - II
|
|
F = S * RV1(I)
|
|
B = C * RV1(I)
|
|
IF (ABS(F) .LT. ABS(G)) GO TO 150
|
|
C = G / F
|
|
R = SQRT(C*C+1.0E0)
|
|
RV1(I+1) = F * R
|
|
S = 1.0E0 / R
|
|
C = C * S
|
|
GO TO 160
|
|
150 S = F / G
|
|
R = SQRT(S*S+1.0E0)
|
|
RV1(I+1) = G * R
|
|
C = 1.0E0 / R
|
|
S = S * C
|
|
160 G = W(I+1) - P
|
|
R = (W(I) - G) * S + 2.0E0 * C * B
|
|
P = S * R
|
|
W(I+1) = G + P
|
|
G = C * R - B
|
|
200 CONTINUE
|
|
C
|
|
W(L) = W(L) - P
|
|
RV1(L) = G
|
|
RV1(M) = 0.0E0
|
|
GO TO 105
|
|
C .......... ORDER EIGENVALUES ..........
|
|
215 IF (L .EQ. 1) GO TO 250
|
|
C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
|
|
DO 230 II = 2, L
|
|
I = L + 2 - II
|
|
IF (P .GE. W(I-1)) GO TO 270
|
|
W(I) = W(I-1)
|
|
IND(I) = IND(I-1)
|
|
230 CONTINUE
|
|
C
|
|
250 I = 1
|
|
270 W(I) = P
|
|
IND(I) = TAG
|
|
290 CONTINUE
|
|
C
|
|
GO TO 1001
|
|
C .......... SET ERROR -- NO CONVERGENCE TO AN
|
|
C EIGENVALUE AFTER 30 ITERATIONS ..........
|
|
1000 IERR = L
|
|
1001 RETURN
|
|
END
|