OpenLibm/slatec/lssuds.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

273 lines
9.5 KiB
Fortran

*DECK LSSUDS
SUBROUTINE LSSUDS (A, X, B, N, M, NRDA, U, NRDU, IFLAG, MLSO,
+ IRANK, ISCALE, Q, DIAG, KPIVOT, S, DIV, TD, ISFLG, SCALES)
C***BEGIN PROLOGUE LSSUDS
C***SUBSIDIARY
C***PURPOSE Subsidiary to BVSUP
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (LSSUDS-S, DLSSUD-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C LSSUDS solves the underdetermined system of equations A Z = B,
C where A is N by M and N .LE. M. In particular, if rank A equals
C IRA, a vector X and a matrix U are determined such that X is the
C UNIQUE solution of smallest length, satisfying A X = B, and the
C columns of U form an orthonormal basis for the null space of A,
C satisfying A U = 0 . Then all solutions Z are given by
C Z = X + C(1)*U(1) + ..... + C(M-IRA)*U(M-IRA)
C where U(J) represents the J-th column of U and the C(J) are
C arbitrary constants.
C If the system of equations are not compatible, only the least
C squares solution of minimal length is computed.
C
C *********************************************************************
C INPUT
C *********************************************************************
C
C A -- Contains the matrix of N equations in M unknowns, A remains
C unchanged, must be dimensioned NRDA by M.
C X -- Solution array of length at least M.
C B -- Given constant vector of length N, B remains unchanged.
C N -- Number of equations, N greater or equal to 1.
C M -- Number of unknowns, M greater or equal to N.
C NRDA -- Row dimension of A, NRDA greater or equal to N.
C U -- Matrix used for solution, must be dimensioned NRDU by
C (M - rank of A).
C (storage for U may be ignored when only the minimal length
C solution X is desired)
C NRDU -- Row dimension of U, NRDU greater or equal to M.
C (if only the minimal length solution is wanted,
C NRDU=0 is acceptable)
C IFLAG -- Status indicator
C =0 for the first call (and for each new problem defined by
C a new matrix A) when the matrix data is treated as exact
C =-K for the first call (and for each new problem defined by
C a new matrix A) when the matrix data is assumed to be
C accurate to about K digits.
C =1 for subsequent calls whenever the matrix A has already
C been decomposed (problems with new vectors B but
C same matrix A can be handled efficiently).
C MLSO -- =0 if only the minimal length solution is wanted.
C =1 if the complete solution is wanted, includes the
C linear space defined by the matrix U.
C IRANK -- Variable used for the rank of A, set by the code.
C ISCALE -- Scaling indicator
C =-1 if the matrix A is to be pre-scaled by
C columns when appropriate.
C If the scaling indicator is not equal to -1
C no scaling will be attempted.
C For most problems scaling will probably not be necessary.
C Q -- Matrix used for the transformation, must be dimensioned
C NRDA by M.
C DIAG,KPIVOT,S, -- Arrays of length at least N used for internal
C DIV,TD,SCALES storage (except for SCALES which is M).
C ISFLG -- Storage for an internal variable.
C
C *********************************************************************
C OUTPUT
C *********************************************************************
C
C IFLAG -- Status indicator
C =1 if solution was obtained.
C =2 if improper input is detected.
C =3 if rank of matrix is less than N.
C To continue, simply reset IFLAG=1 and call LSSUDS again.
C =4 if the system of equations appears to be inconsistent.
C However, the least squares solution of minimal length
C was obtained.
C X -- Minimal length least squares solution of A Z = B
C IRANK -- Numerically determined rank of A, must not be altered
C on succeeding calls with input values of IFLAG=1.
C U -- Matrix whose M-IRANK columns are mutually orthogonal unit
C vectors which span the null space of A. This is to be ignored
C when MLSO was set to zero or IFLAG=4 on output.
C Q -- Contains the strictly upper triangular part of the reduced
C matrix and transformation information.
C DIAG -- Contains the diagonal elements of the triangular reduced
C matrix.
C KPIVOT -- Contains the pivotal information. The row interchanges
C performed on the original matrix are recorded here.
C S -- Contains the solution of the lower triangular system.
C DIV,TD -- Contains transformation information for rank
C deficient problems.
C SCALES -- Contains the column scaling parameters.
C
C *********************************************************************
C
C***SEE ALSO BVSUP
C***REFERENCES H. A. Watts, Solving linear least squares problems
C using SODS/SUDS/CODS, Sandia Report SAND77-0683,
C Sandia Laboratories, 1977.
C***ROUTINES CALLED J4SAVE, OHTROL, ORTHOR, R1MACH, SDOT, XERMAX,
C XERMSG, XGETF, XSETF
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900328 Added TYPE section. (WRB)
C 900510 Fixed an error message. (RWC)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE LSSUDS
DIMENSION A(NRDA,*),X(*),B(*),U(NRDU,*),Q(NRDA,*),
1 DIAG(*),KPIVOT(*),S(*),DIV(*),TD(*),SCALES(*)
C
C **********************************************************************
C
C MACHINE PRECISION (COMPUTER UNIT ROUNDOFF VALUE) IS DEFINED
C BY THE FUNCTION R1MACH.
C
C***FIRST EXECUTABLE STATEMENT LSSUDS
URO = R1MACH(4)
C
C **********************************************************************
C
IF (N .LT. 1 .OR. M .LT. N .OR. NRDA .LT. N) GO TO 1
IF (NRDU .NE. 0 .AND. NRDU .LT. M) GO TO 1
IF (IFLAG .LE. 0) GO TO 5
IF (IFLAG .EQ. 1) GO TO 25
C
C INVALID INPUT FOR LSSUDS
1 IFLAG=2
CALL XERMSG ('SLATEC', 'LSSUDS', 'INVALID INPUT PARAMETERS.', 2,
+ 1)
RETURN
C
5 CALL XGETF(NFATAL)
MAXMES = J4SAVE (4,0,.FALSE.)
ISFLG=-15
IF (IFLAG .EQ. 0) GO TO 7
ISFLG=IFLAG
NFAT = -1
IF (NFATAL .EQ. 0) NFAT=0
CALL XSETF(NFAT)
CALL XERMAX(1)
C
C COPY MATRIX A INTO MATRIX Q
C
7 DO 10 K=1,M
DO 10 J=1,N
10 Q(J,K)=A(J,K)
C
C USE ORTHOGONAL TRANSFORMATIONS TO REDUCE Q TO LOWER
C TRIANGULAR FORM
C
CALL ORTHOR(Q,N,M,NRDA,IFLAG,IRANK,ISCALE,DIAG,KPIVOT,SCALES,
1 DIV,TD)
C
CALL XSETF(NFATAL)
CALL XERMAX(MAXMES)
IF (IRANK .EQ. N) GO TO 15
C
C FOR RANK DEFICIENT PROBLEMS USE ADDITIONAL ORTHOGONAL
C TRANSFORMATIONS TO FURTHER REDUCE Q
C
IF (IRANK .NE. 0) CALL OHTROL(Q,N,NRDA,DIAG,IRANK,DIV,TD)
RETURN
C
C STORE DIVISORS FOR THE TRIANGULAR SOLUTION
C
15 DO 20 K=1,N
20 DIV(K)=DIAG(K)
C
C
25 IF (IRANK .GT. 0) GO TO 40
C
C SPECIAL CASE FOR THE NULL MATRIX
DO 35 K=1,M
X(K)=0.
IF (MLSO .EQ. 0) GO TO 35
U(K,K)=1.
DO 30 J=1,M
IF (J .EQ. K) GO TO 30
U(J,K)=0.
30 CONTINUE
35 CONTINUE
DO 37 K=1,N
IF (B(K) .GT. 0.) IFLAG=4
37 CONTINUE
RETURN
C
C COPY CONSTANT VECTOR INTO S AFTER FIRST INTERCHANGING
C THE ELEMENTS ACCORDING TO THE PIVOTAL SEQUENCE
C
40 DO 45 K=1,N
KP=KPIVOT(K)
45 X(K)=B(KP)
DO 50 K=1,N
50 S(K)=X(K)
C
IRP=IRANK+1
NU=1
IF (MLSO .EQ. 0) NU=0
IF (IRANK .EQ. N) GO TO 60
C
C FOR RANK DEFICIENT PROBLEMS WE MUST APPLY THE
C ORTHOGONAL TRANSFORMATION TO S
C WE ALSO CHECK TO SEE IF THE SYSTEM APPEARS TO BE INCONSISTENT
C
NMIR=N-IRANK
SS=SDOT(N,S(1),1,S(1),1)
DO 55 L=1,IRANK
K=IRP-L
GAM=((TD(K)*S(K))+SDOT(NMIR,Q(IRP,K),1,S(IRP),1))/
1 (TD(K)*DIV(K))
S(K)=S(K)+GAM*TD(K)
DO 55 J=IRP,N
55 S(J)=S(J)+GAM*Q(J,K)
RES=SDOT(NMIR,S(IRP),1,S(IRP),1)
IF (RES .LE. SS*(10.*MAX(10.**ISFLG,10.*URO))**2) GO TO 60
C
C INCONSISTENT SYSTEM
IFLAG=4
NU=0
C
C APPLY FORWARD SUBSTITUTION TO SOLVE LOWER TRIANGULAR SYSTEM
C
60 S(1)=S(1)/DIV(1)
IF (IRANK .EQ. 1) GO TO 70
DO 65 K=2,IRANK
65 S(K)=(S(K)-SDOT(K-1,Q(K,1),NRDA,S(1),1))/DIV(K)
C
C INITIALIZE X VECTOR AND THEN APPLY ORTHOGONAL TRANSFORMATION
C
70 DO 75 K=1,M
X(K)=0.
IF (K .LE. IRANK) X(K)=S(K)
75 CONTINUE
C
DO 80 JR=1,IRANK
J=IRP-JR
MJ=M-J+1
GAMMA=SDOT(MJ,Q(J,J),NRDA,X(J),1)/(DIAG(J)*Q(J,J))
DO 80 K=J,M
80 X(K)=X(K)+GAMMA*Q(J,K)
C
C RESCALE ANSWERS AS DICTATED
C
DO 85 K=1,M
85 X(K)=X(K)*SCALES(K)
C
IF ((NU .EQ. 0) .OR. (M .EQ. IRANK)) RETURN
C
C INITIALIZE U MATRIX AND THEN APPLY ORTHOGONAL TRANSFORMATION
C
L=M-IRANK
DO 100 K=1,L
DO 90 I=1,M
U(I,K)=0.
IF (I .EQ. IRANK+K) U(I,K)=1.
90 CONTINUE
C
DO 100 JR=1,IRANK
J=IRP-JR
MJ=M-J+1
GAMMA=SDOT(MJ,Q(J,J),NRDA,U(J,K),1)/(DIAG(J)*Q(J,J))
DO 100 I=J,M
100 U(I,K)=U(I,K)+GAMMA*Q(J,I)
C
RETURN
END