OpenLibm/slatec/pchci.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

184 lines
5.5 KiB
Fortran

*DECK PCHCI
SUBROUTINE PCHCI (N, H, SLOPE, D, INCFD)
C***BEGIN PROLOGUE PCHCI
C***SUBSIDIARY
C***PURPOSE Set interior derivatives for PCHIC
C***LIBRARY SLATEC (PCHIP)
C***TYPE SINGLE PRECISION (PCHCI-S, DPCHCI-D)
C***AUTHOR Fritsch, F. N., (LLNL)
C***DESCRIPTION
C
C PCHCI: PCHIC Initial Derivative Setter.
C
C Called by PCHIC to set derivatives needed to determine a monotone
C piecewise cubic Hermite interpolant to the data.
C
C Default boundary conditions are provided which are compatible
C with monotonicity. If the data are only piecewise monotonic, the
C interpolant will have an extremum at each point where monotonicity
C switches direction.
C
C To facilitate two-dimensional applications, includes an increment
C between successive values of the D-array.
C
C The resulting piecewise cubic Hermite function should be identical
C (within roundoff error) to that produced by PCHIM.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER N
C REAL H(N), SLOPE(N), D(INCFD,N)
C
C CALL PCHCI (N, H, SLOPE, D, INCFD)
C
C Parameters:
C
C N -- (input) number of data points.
C If N=2, simply does linear interpolation.
C
C H -- (input) real array of interval lengths.
C SLOPE -- (input) real array of data slopes.
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
C H(I) = X(I+1)-X(I),
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
C
C D -- (output) real array of derivative values at the data points.
C If the data are monotonic, these values will determine a
C a monotone cubic Hermite function.
C The value corresponding to X(I) is stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C No other entries in D are changed.
C
C INCFD -- (input) increment between successive values in D.
C This argument is provided primarily for 2-D applications.
C
C -------
C WARNING: This routine does no validity-checking of arguments.
C -------
C
C Fortran intrinsics used: ABS, MAX, MIN.
C
C***SEE ALSO PCHIC
C***ROUTINES CALLED PCHST
C***REVISION HISTORY (YYMMDD)
C 820218 DATE WRITTEN
C 820601 Modified end conditions to be continuous functions of
C data when monotonicity switches in next interval.
C 820602 1. Modified formulas so end conditions are less prone
C to over/underflow problems.
C 2. Minor modification to HSUM calculation.
C 820805 Converted to SLATEC library version.
C 890411 Added SAVE statements (Vers. 3.2).
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910408 Updated AUTHOR section in prologue. (WRB)
C 930503 Improved purpose. (FNF)
C***END PROLOGUE PCHCI
C
C Programming notes:
C 1. The function PCHST(ARG1,ARG2) is assumed to return zero if
C either argument is zero, +1 if they are of the same sign, and
C -1 if they are of opposite sign.
C**End
C
C DECLARE ARGUMENTS.
C
INTEGER N, INCFD
REAL H(*), SLOPE(*), D(INCFD,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER I, NLESS1
REAL DEL1, DEL2, DMAX, DMIN, DRAT1, DRAT2, HSUM, HSUMT3, THREE,
* W1, W2, ZERO
SAVE ZERO, THREE
REAL PCHST
C
C INITIALIZE.
C
DATA ZERO /0./, THREE /3./
C***FIRST EXECUTABLE STATEMENT PCHCI
NLESS1 = N - 1
DEL1 = SLOPE(1)
C
C SPECIAL CASE N=2 -- USE LINEAR INTERPOLATION.
C
IF (NLESS1 .GT. 1) GO TO 10
D(1,1) = DEL1
D(1,N) = DEL1
GO TO 5000
C
C NORMAL CASE (N .GE. 3).
C
10 CONTINUE
DEL2 = SLOPE(2)
C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
HSUM = H(1) + H(2)
W1 = (H(1) + HSUM)/HSUM
W2 = -H(1)/HSUM
D(1,1) = W1*DEL1 + W2*DEL2
IF ( PCHST(D(1,1),DEL1) .LE. ZERO) THEN
D(1,1) = ZERO
ELSE IF ( PCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX
ENDIF
C
C LOOP THROUGH INTERIOR POINTS.
C
DO 50 I = 2, NLESS1
IF (I .EQ. 2) GO TO 40
C
HSUM = H(I-1) + H(I)
DEL1 = DEL2
DEL2 = SLOPE(I)
40 CONTINUE
C
C SET D(I)=0 UNLESS DATA ARE STRICTLY MONOTONIC.
C
D(1,I) = ZERO
IF ( PCHST(DEL1,DEL2) .LE. ZERO) GO TO 50
C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H(I-1))/HSUMT3
W2 = (HSUM + H(I) )/HSUMT3
DMAX = MAX( ABS(DEL1), ABS(DEL2) )
DMIN = MIN( ABS(DEL1), ABS(DEL2) )
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)
C
50 CONTINUE
C
C SET D(N) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
W1 = -H(N-1)/HSUM
W2 = (H(N-1) + HSUM)/HSUM
D(1,N) = W1*DEL1 + W2*DEL2
IF ( PCHST(D(1,N),DEL2) .LE. ZERO) THEN
D(1,N) = ZERO
ELSE IF ( PCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL2
IF (ABS(D(1,N)) .GT. ABS(DMAX)) D(1,N) = DMAX
ENDIF
C
C NORMAL RETURN.
C
5000 CONTINUE
RETURN
C------------- LAST LINE OF PCHCI FOLLOWS ------------------------------
END