mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
235 lines
8.3 KiB
Fortran
235 lines
8.3 KiB
Fortran
*DECK PCHCS
|
|
SUBROUTINE PCHCS (SWITCH, N, H, SLOPE, D, INCFD, IERR)
|
|
C***BEGIN PROLOGUE PCHCS
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Adjusts derivative values for PCHIC
|
|
C***LIBRARY SLATEC (PCHIP)
|
|
C***TYPE SINGLE PRECISION (PCHCS-S, DPCHCS-D)
|
|
C***AUTHOR Fritsch, F. N., (LLNL)
|
|
C***DESCRIPTION
|
|
C
|
|
C PCHCS: PCHIC Monotonicity Switch Derivative Setter.
|
|
C
|
|
C Called by PCHIC to adjust the values of D in the vicinity of a
|
|
C switch in direction of monotonicity, to produce a more "visually
|
|
C pleasing" curve than that given by PCHIM .
|
|
C
|
|
C ----------------------------------------------------------------------
|
|
C
|
|
C Calling sequence:
|
|
C
|
|
C PARAMETER (INCFD = ...)
|
|
C INTEGER N, IERR
|
|
C REAL SWITCH, H(N), SLOPE(N), D(INCFD,N)
|
|
C
|
|
C CALL PCHCS (SWITCH, N, H, SLOPE, D, INCFD, IERR)
|
|
C
|
|
C Parameters:
|
|
C
|
|
C SWITCH -- (input) indicates the amount of control desired over
|
|
C local excursions from data.
|
|
C
|
|
C N -- (input) number of data points. (assumes N.GT.2 .)
|
|
C
|
|
C H -- (input) real array of interval lengths.
|
|
C SLOPE -- (input) real array of data slopes.
|
|
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
|
|
C H(I) = X(I+1)-X(I),
|
|
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
|
|
C
|
|
C D -- (input) real array of derivative values at the data points,
|
|
C as determined by PCHCI.
|
|
C (output) derivatives in the vicinity of switches in direction
|
|
C of monotonicity may be adjusted to produce a more "visually
|
|
C pleasing" curve.
|
|
C The value corresponding to X(I) is stored in
|
|
C D(1+(I-1)*INCFD), I=1(1)N.
|
|
C No other entries in D are changed.
|
|
C
|
|
C INCFD -- (input) increment between successive values in D.
|
|
C This argument is provided primarily for 2-D applications.
|
|
C
|
|
C IERR -- (output) error flag. should be zero.
|
|
C If negative, trouble in PCHSW. (should never happen.)
|
|
C
|
|
C -------
|
|
C WARNING: This routine does no validity-checking of arguments.
|
|
C -------
|
|
C
|
|
C Fortran intrinsics used: ABS, MAX, MIN.
|
|
C
|
|
C***SEE ALSO PCHIC
|
|
C***ROUTINES CALLED PCHST, PCHSW
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 820218 DATE WRITTEN
|
|
C 820617 Redesigned to (1) fix problem with lack of continuity
|
|
C approaching a flat-topped peak (2) be cleaner and
|
|
C easier to verify.
|
|
C Eliminated subroutines PCHSA and PCHSX in the process.
|
|
C 820622 1. Limited fact to not exceed one, so computed D is a
|
|
C convex combination of PCHCI value and PCHSD value.
|
|
C 2. Changed fudge from 1 to 4 (based on experiments).
|
|
C 820623 Moved PCHSD to an inline function (eliminating MSWTYP).
|
|
C 820805 Converted to SLATEC library version.
|
|
C 870813 Minor cosmetic changes.
|
|
C 890411 Added SAVE statements (Vers. 3.2).
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900328 Added TYPE section. (WRB)
|
|
C 910408 Updated AUTHOR section in prologue. (WRB)
|
|
C 930503 Improved purpose. (FNF)
|
|
C***END PROLOGUE PCHCS
|
|
C
|
|
C Programming notes:
|
|
C 1. The function PCHST(ARG1,ARG2) is assumed to return zero if
|
|
C either argument is zero, +1 if they are of the same sign, and
|
|
C -1 if they are of opposite sign.
|
|
C**End
|
|
C
|
|
C DECLARE ARGUMENTS.
|
|
C
|
|
INTEGER N, INCFD, IERR
|
|
REAL SWITCH, H(*), SLOPE(*), D(INCFD,*)
|
|
C
|
|
C DECLARE LOCAL VARIABLES.
|
|
C
|
|
INTEGER I, INDX, K, NLESS1
|
|
REAL DEL(3), DEXT, DFLOC, DFMX, FACT, FUDGE, ONE, SLMAX,
|
|
* WTAVE(2), ZERO
|
|
SAVE ZERO, ONE, FUDGE
|
|
REAL PCHST
|
|
C
|
|
C DEFINE INLINE FUNCTION FOR WEIGHTED AVERAGE OF SLOPES.
|
|
C
|
|
REAL PCHSD, S1, S2, H1, H2
|
|
PCHSD(S1,S2,H1,H2) = (H2/(H1+H2))*S1 + (H1/(H1+H2))*S2
|
|
C
|
|
C INITIALIZE.
|
|
C
|
|
DATA ZERO /0./, ONE /1./
|
|
DATA FUDGE /4./
|
|
C***FIRST EXECUTABLE STATEMENT PCHCS
|
|
IERR = 0
|
|
NLESS1 = N - 1
|
|
C
|
|
C LOOP OVER SEGMENTS.
|
|
C
|
|
DO 900 I = 2, NLESS1
|
|
IF ( PCHST(SLOPE(I-1),SLOPE(I)) ) 100, 300, 900
|
|
C --------------------------
|
|
C
|
|
100 CONTINUE
|
|
C
|
|
C....... SLOPE SWITCHES MONOTONICITY AT I-TH POINT .....................
|
|
C
|
|
C DO NOT CHANGE D IF 'UP-DOWN-UP'.
|
|
IF (I .GT. 2) THEN
|
|
IF ( PCHST(SLOPE(I-2),SLOPE(I)) .GT. ZERO) GO TO 900
|
|
C --------------------------
|
|
ENDIF
|
|
IF (I .LT. NLESS1) THEN
|
|
IF ( PCHST(SLOPE(I+1),SLOPE(I-1)) .GT. ZERO) GO TO 900
|
|
C ----------------------------
|
|
ENDIF
|
|
C
|
|
C ....... COMPUTE PROVISIONAL VALUE FOR D(1,I).
|
|
C
|
|
DEXT = PCHSD (SLOPE(I-1), SLOPE(I), H(I-1), H(I))
|
|
C
|
|
C ....... DETERMINE WHICH INTERVAL CONTAINS THE EXTREMUM.
|
|
C
|
|
IF ( PCHST(DEXT, SLOPE(I-1)) ) 200, 900, 250
|
|
C -----------------------
|
|
C
|
|
200 CONTINUE
|
|
C DEXT AND SLOPE(I-1) HAVE OPPOSITE SIGNS --
|
|
C EXTREMUM IS IN (X(I-1),X(I)).
|
|
K = I-1
|
|
C SET UP TO COMPUTE NEW VALUES FOR D(1,I-1) AND D(1,I).
|
|
WTAVE(2) = DEXT
|
|
IF (K .GT. 1)
|
|
* WTAVE(1) = PCHSD (SLOPE(K-1), SLOPE(K), H(K-1), H(K))
|
|
GO TO 400
|
|
C
|
|
250 CONTINUE
|
|
C DEXT AND SLOPE(I) HAVE OPPOSITE SIGNS --
|
|
C EXTREMUM IS IN (X(I),X(I+1)).
|
|
K = I
|
|
C SET UP TO COMPUTE NEW VALUES FOR D(1,I) AND D(1,I+1).
|
|
WTAVE(1) = DEXT
|
|
IF (K .LT. NLESS1)
|
|
* WTAVE(2) = PCHSD (SLOPE(K), SLOPE(K+1), H(K), H(K+1))
|
|
GO TO 400
|
|
C
|
|
300 CONTINUE
|
|
C
|
|
C....... AT LEAST ONE OF SLOPE(I-1) AND SLOPE(I) IS ZERO --
|
|
C CHECK FOR FLAT-TOPPED PEAK .......................
|
|
C
|
|
IF (I .EQ. NLESS1) GO TO 900
|
|
IF ( PCHST(SLOPE(I-1), SLOPE(I+1)) .GE. ZERO) GO TO 900
|
|
C -----------------------------
|
|
C
|
|
C WE HAVE FLAT-TOPPED PEAK ON (X(I),X(I+1)).
|
|
K = I
|
|
C SET UP TO COMPUTE NEW VALUES FOR D(1,I) AND D(1,I+1).
|
|
WTAVE(1) = PCHSD (SLOPE(K-1), SLOPE(K), H(K-1), H(K))
|
|
WTAVE(2) = PCHSD (SLOPE(K), SLOPE(K+1), H(K), H(K+1))
|
|
C
|
|
400 CONTINUE
|
|
C
|
|
C....... AT THIS POINT WE HAVE DETERMINED THAT THERE WILL BE AN EXTREMUM
|
|
C ON (X(K),X(K+1)), WHERE K=I OR I-1, AND HAVE SET ARRAY WTAVE--
|
|
C WTAVE(1) IS A WEIGHTED AVERAGE OF SLOPE(K-1) AND SLOPE(K),
|
|
C IF K.GT.1
|
|
C WTAVE(2) IS A WEIGHTED AVERAGE OF SLOPE(K) AND SLOPE(K+1),
|
|
C IF K.LT.N-1
|
|
C
|
|
SLMAX = ABS(SLOPE(K))
|
|
IF (K .GT. 1) SLMAX = MAX( SLMAX, ABS(SLOPE(K-1)) )
|
|
IF (K.LT.NLESS1) SLMAX = MAX( SLMAX, ABS(SLOPE(K+1)) )
|
|
C
|
|
IF (K .GT. 1) DEL(1) = SLOPE(K-1) / SLMAX
|
|
DEL(2) = SLOPE(K) / SLMAX
|
|
IF (K.LT.NLESS1) DEL(3) = SLOPE(K+1) / SLMAX
|
|
C
|
|
IF ((K.GT.1) .AND. (K.LT.NLESS1)) THEN
|
|
C NORMAL CASE -- EXTREMUM IS NOT IN A BOUNDARY INTERVAL.
|
|
FACT = FUDGE* ABS(DEL(3)*(DEL(1)-DEL(2))*(WTAVE(2)/SLMAX))
|
|
D(1,K) = D(1,K) + MIN(FACT,ONE)*(WTAVE(1) - D(1,K))
|
|
FACT = FUDGE* ABS(DEL(1)*(DEL(3)-DEL(2))*(WTAVE(1)/SLMAX))
|
|
D(1,K+1) = D(1,K+1) + MIN(FACT,ONE)*(WTAVE(2) - D(1,K+1))
|
|
ELSE
|
|
C SPECIAL CASE K=1 (WHICH CAN OCCUR ONLY IF I=2) OR
|
|
C K=NLESS1 (WHICH CAN OCCUR ONLY IF I=NLESS1).
|
|
FACT = FUDGE* ABS(DEL(2))
|
|
D(1,I) = MIN(FACT,ONE) * WTAVE(I-K+1)
|
|
C NOTE THAT I-K+1 = 1 IF K=I (=NLESS1),
|
|
C I-K+1 = 2 IF K=I-1(=1).
|
|
ENDIF
|
|
C
|
|
C
|
|
C....... ADJUST IF NECESSARY TO LIMIT EXCURSIONS FROM DATA.
|
|
C
|
|
IF (SWITCH .LE. ZERO) GO TO 900
|
|
C
|
|
DFLOC = H(K)*ABS(SLOPE(K))
|
|
IF (K .GT. 1) DFLOC = MAX( DFLOC, H(K-1)*ABS(SLOPE(K-1)) )
|
|
IF (K.LT.NLESS1) DFLOC = MAX( DFLOC, H(K+1)*ABS(SLOPE(K+1)) )
|
|
DFMX = SWITCH*DFLOC
|
|
INDX = I-K+1
|
|
C INDX = 1 IF K=I, 2 IF K=I-1.
|
|
C ---------------------------------------------------------------
|
|
CALL PCHSW (DFMX, INDX, D(1,K), D(1,K+1), H(K), SLOPE(K), IERR)
|
|
C ---------------------------------------------------------------
|
|
IF (IERR .NE. 0) RETURN
|
|
C
|
|
C....... END OF SEGMENT LOOP.
|
|
C
|
|
900 CONTINUE
|
|
C
|
|
RETURN
|
|
C------------- LAST LINE OF PCHCS FOLLOWS ------------------------------
|
|
END
|