mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
190 lines
7.9 KiB
Fortran
190 lines
7.9 KiB
Fortran
*DECK QAWC
|
|
SUBROUTINE QAWC (F, A, B, C, EPSABS, EPSREL, RESULT, ABSERR,
|
|
+ NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
|
|
C***BEGIN PROLOGUE QAWC
|
|
C***PURPOSE The routine calculates an approximation result to a
|
|
C Cauchy principal value I = INTEGRAL of F*W over (A,B)
|
|
C (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
|
|
C following claim for accuracy
|
|
C ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A1, J4
|
|
C***TYPE SINGLE PRECISION (QAWC-S, DQAWC-D)
|
|
C***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
|
|
C CLENSHAW-CURTIS METHOD, GLOBALLY ADAPTIVE, QUADPACK,
|
|
C QUADRATURE, SPECIAL-PURPOSE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Computation of a Cauchy principal value
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C Function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the driver program.
|
|
C
|
|
C A - Real
|
|
C Under limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C C - Parameter in the weight function, C.NE.A, C.NE.B.
|
|
C If C = A or C = B, the routine will end with
|
|
C IER = 6 .
|
|
C
|
|
C EPSABS - Real
|
|
C Absolute accuracy requested
|
|
C EPSREL - Real
|
|
C Relative accuracy requested
|
|
C If EPSABS.LE.0
|
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C the routine will end with IER = 6.
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate or the modulus of the absolute error,
|
|
C Which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C IER - Integer
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C IER.GT.0 Abnormal termination of the routine
|
|
C the estimates for integral and error are
|
|
C less reliable. It is assumed that the
|
|
C requested accuracy has not been achieved.
|
|
C ERROR MESSAGES
|
|
C IER = 1 Maximum number of subdivisions allowed
|
|
C has been achieved. One can allow more sub-
|
|
C divisions by increasing the value of LIMIT
|
|
C (and taking the according dimension
|
|
C adjustments into account). However, if
|
|
C this yields no improvement it is advised
|
|
C to analyze the integrand in order to
|
|
C determine the integration difficulties.
|
|
C If the position of a local difficulty
|
|
C can be determined (e.g. SINGULARITY,
|
|
C DISCONTINUITY within the interval) one
|
|
C will probably gain from splitting up the
|
|
C interval at this point and calling
|
|
C appropriate integrators on the subranges.
|
|
C = 2 The occurrence of roundoff error is detec-
|
|
C ted, which prevents the requested
|
|
C tolerance from being achieved.
|
|
C = 3 Extremely bad integrand behaviour occurs
|
|
C at some points of the integration
|
|
C interval.
|
|
C = 6 The input is invalid, because
|
|
C C = A or C = B or
|
|
C (EPSABS.LE.0 and
|
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
|
|
C or LIMIT.LT.1 or LENW.LT.LIMIT*4.
|
|
C RESULT, ABSERR, NEVAL, LAST are set to
|
|
C zero. Except when LENW or LIMIT is
|
|
C invalid, IWORK(1), WORK(LIMIT*2+1) and
|
|
C WORK(LIMIT*3+1) are set to zero, WORK(1)
|
|
C is set to A and WORK(LIMIT+1) to B.
|
|
C
|
|
C DIMENSIONING PARAMETERS
|
|
C LIMIT - Integer
|
|
C Dimensioning parameter for IWORK
|
|
C LIMIT determines the maximum number of subintervals
|
|
C in the partition of the given integration interval
|
|
C (A,B), LIMIT.GE.1.
|
|
C If LIMIT.LT.1, the routine will end with IER = 6.
|
|
C
|
|
C LENW - Integer
|
|
C Dimensioning parameter for WORK
|
|
C LENW must be at least LIMIT*4.
|
|
C If LENW.LT.LIMIT*4, the routine will end with
|
|
C IER = 6.
|
|
C
|
|
C LAST - Integer
|
|
C On return, LAST equals the number of subintervals
|
|
C produced in the subdivision process, which
|
|
C determines the number of significant elements
|
|
C actually in the WORK ARRAYS.
|
|
C
|
|
C WORK ARRAYS
|
|
C IWORK - Integer
|
|
C Vector of dimension at least LIMIT, the first K
|
|
C elements of which contain pointers
|
|
C to the error estimates over the subintervals,
|
|
C such that WORK(LIMIT*3+IWORK(1)), ... ,
|
|
C WORK(LIMIT*3+IWORK(K)) form a decreasing
|
|
C sequence, with K = LAST if LAST.LE.(LIMIT/2+2),
|
|
C and K = LIMIT+1-LAST otherwise
|
|
C
|
|
C WORK - Real
|
|
C Vector of dimension at least LENW
|
|
C On return
|
|
C WORK(1), ..., WORK(LAST) contain the left
|
|
C end points of the subintervals in the
|
|
C partition of (A,B),
|
|
C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
|
|
C the right end points,
|
|
C WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
|
|
C the integral approximations over the subintervals,
|
|
C WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
|
|
C contain the error estimates.
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QAWCE, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C***END PROLOGUE QAWC
|
|
C
|
|
REAL A,ABSERR,B,C,EPSABS,EPSREL,F,RESULT,WORK
|
|
INTEGER IER,IWORK,LENW,LIMIT,LVL,L1,L2,L3,NEVAL
|
|
C
|
|
DIMENSION IWORK(*),WORK(*)
|
|
C
|
|
EXTERNAL F
|
|
C
|
|
C CHECK VALIDITY OF LIMIT AND LENW.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QAWC
|
|
IER = 6
|
|
NEVAL = 0
|
|
LAST = 0
|
|
RESULT = 0.0E+00
|
|
ABSERR = 0.0E+00
|
|
IF(LIMIT.LT.1.OR.LENW.LT.LIMIT*4) GO TO 10
|
|
C
|
|
C PREPARE CALL FOR QAWCE.
|
|
C
|
|
L1 = LIMIT+1
|
|
L2 = LIMIT+L1
|
|
L3 = LIMIT+L2
|
|
CALL QAWCE(F,A,B,C,EPSABS,EPSREL,LIMIT,RESULT,ABSERR,NEVAL,IER,
|
|
1 WORK(1),WORK(L1),WORK(L2),WORK(L3),IWORK,LAST)
|
|
C
|
|
C CALL ERROR HANDLER IF NECESSARY.
|
|
C
|
|
LVL = 0
|
|
10 IF(IER.EQ.6) LVL = 1
|
|
IF (IER .NE. 0) CALL XERMSG ('SLATEC', 'QAWC',
|
|
+ 'ABNORMAL RETURN', IER, LVL)
|
|
RETURN
|
|
END
|