mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
547 lines
21 KiB
Fortran
547 lines
21 KiB
Fortran
*DECK QAWOE
|
|
SUBROUTINE QAWOE (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, LIMIT,
|
|
+ ICALL, MAXP1, RESULT, ABSERR, NEVAL, IER, LAST, ALIST, BLIST,
|
|
+ RLIST, ELIST, IORD, NNLOG, MOMCOM, CHEBMO)
|
|
C***BEGIN PROLOGUE QAWOE
|
|
C***PURPOSE Calculate an approximation to a given definite integral
|
|
C I = Integral of F(X)*W(X) over (A,B), where
|
|
C W(X) = COS(OMEGA*X)
|
|
C or W(X) = SIN(OMEGA*X),
|
|
C hopefully satisfying the following claim for accuracy
|
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A2A1
|
|
C***TYPE SINGLE PRECISION (QAWOE-S, DQAWOE-D)
|
|
C***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
|
|
C EXTRAPOLATION, GLOBALLY ADAPTIVE,
|
|
C INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
|
|
C QUADRATURE, SPECIAL-PURPOSE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Computation of Oscillatory integrals
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subprogram defining the integrand
|
|
C function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the driver program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C OMEGA - Real
|
|
C Parameter in the integrand weight function
|
|
C
|
|
C INTEGR - Integer
|
|
C Indicates which of the WEIGHT functions is to be
|
|
C used
|
|
C INTEGR = 1 W(X) = COS(OMEGA*X)
|
|
C INTEGR = 2 W(X) = SIN(OMEGA*X)
|
|
C If INTEGR.NE.1 and INTEGR.NE.2, the routine
|
|
C will end with IER = 6.
|
|
C
|
|
C EPSABS - Real
|
|
C Absolute accuracy requested
|
|
C EPSREL - Real
|
|
C Relative accuracy requested
|
|
C If EPSABS.LE.0
|
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C the routine will end with IER = 6.
|
|
C
|
|
C LIMIT - Integer
|
|
C Gives an upper bound on the number of subdivisions
|
|
C in the partition of (A,B), LIMIT.GE.1.
|
|
C
|
|
C ICALL - Integer
|
|
C If QAWOE is to be used only once, ICALL must
|
|
C be set to 1. Assume that during this call, the
|
|
C Chebyshev moments (for CLENSHAW-CURTIS integration
|
|
C of degree 24) have been computed for intervals of
|
|
C lengths (ABS(B-A))*2**(-L), L=0,1,2,...MOMCOM-1.
|
|
C If ICALL.GT.1 this means that QAWOE has been
|
|
C called twice or more on intervals of the same
|
|
C length ABS(B-A). The Chebyshev moments already
|
|
C computed are then re-used in subsequent calls.
|
|
C If ICALL.LT.1, the routine will end with IER = 6.
|
|
C
|
|
C MAXP1 - Integer
|
|
C Gives an upper bound on the number of Chebyshev
|
|
C moments which can be stored, i.e. for the
|
|
C intervals of lengths ABS(B-A)*2**(-L),
|
|
C L=0,1, ..., MAXP1-2, MAXP1.GE.1.
|
|
C If MAXP1.LT.1, the routine will end with IER = 6.
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should equal or exceed ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C IER - Integer
|
|
C IER = 0 Normal and reliable termination of the
|
|
C routine. It is assumed that the
|
|
C requested accuracy has been achieved.
|
|
C - IER.GT.0 Abnormal termination of the routine.
|
|
C The estimates for integral and error are
|
|
C less reliable. It is assumed that the
|
|
C requested accuracy has not been achieved.
|
|
C ERROR MESSAGES
|
|
C IER = 1 Maximum number of subdivisions allowed
|
|
C has been achieved. One can allow more
|
|
C subdivisions by increasing the value of
|
|
C LIMIT (and taking according dimension
|
|
C adjustments into account). However, if
|
|
C this yields no improvement it is advised
|
|
C to analyze the integrand, in order to
|
|
C determine the integration difficulties.
|
|
C If the position of a local difficulty can
|
|
C be determined (e.g. SINGULARITY,
|
|
C DISCONTINUITY within the interval) one
|
|
C will probably gain from splitting up the
|
|
C interval at this point and calling the
|
|
C integrator on the subranges. If possible,
|
|
C an appropriate special-purpose integrator
|
|
C should be used which is designed for
|
|
C handling the type of difficulty involved.
|
|
C = 2 The occurrence of roundoff error is
|
|
C detected, which prevents the requested
|
|
C tolerance from being achieved.
|
|
C The error may be under-estimated.
|
|
C = 3 Extremely bad integrand behaviour occurs
|
|
C at some points of the integration
|
|
C interval.
|
|
C = 4 The algorithm does not converge.
|
|
C Roundoff error is detected in the
|
|
C extrapolation table.
|
|
C It is presumed that the requested
|
|
C tolerance cannot be achieved due to
|
|
C roundoff in the extrapolation table,
|
|
C and that the returned result is the
|
|
C best which can be obtained.
|
|
C = 5 The integral is probably divergent, or
|
|
C slowly convergent. It must be noted that
|
|
C divergence can occur with any other value
|
|
C of IER.GT.0.
|
|
C = 6 The input is invalid, because
|
|
C (EPSABS.LE.0 and
|
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
|
|
C or (INTEGR.NE.1 and INTEGR.NE.2) or
|
|
C ICALL.LT.1 or MAXP1.LT.1.
|
|
C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
|
|
C ELIST(1), IORD(1) and NNLOG(1) are set
|
|
C to ZERO. ALIST(1) and BLIST(1) are set
|
|
C to A and B respectively.
|
|
C
|
|
C LAST - Integer
|
|
C On return, LAST equals the number of
|
|
C subintervals produces in the subdivision
|
|
C process, which determines the number of
|
|
C significant elements actually in the
|
|
C WORK ARRAYS.
|
|
C ALIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the left
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C BLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the right
|
|
C end points of the subintervals in the partition
|
|
C of the given integration range (A,B)
|
|
C
|
|
C RLIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the integral
|
|
C approximations on the subintervals
|
|
C
|
|
C ELIST - Real
|
|
C Vector of dimension at least LIMIT, the first
|
|
C LAST elements of which are the moduli of the
|
|
C absolute error estimates on the subintervals
|
|
C
|
|
C IORD - Integer
|
|
C Vector of dimension at least LIMIT, the first K
|
|
C elements of which are pointers to the error
|
|
C estimates over the subintervals,
|
|
C such that ELIST(IORD(1)), ...,
|
|
C ELIST(IORD(K)) form a decreasing sequence, with
|
|
C K = LAST if LAST.LE.(LIMIT/2+2), and
|
|
C K = LIMIT+1-LAST otherwise.
|
|
C
|
|
C NNLOG - Integer
|
|
C Vector of dimension at least LIMIT, containing the
|
|
C subdivision levels of the subintervals, i.e.
|
|
C IWORK(I) = L means that the subinterval
|
|
C numbered I is of length ABS(B-A)*2**(1-L)
|
|
C
|
|
C ON ENTRY AND RETURN
|
|
C MOMCOM - Integer
|
|
C Indicating that the Chebyshev moments
|
|
C have been computed for intervals of lengths
|
|
C (ABS(B-A))*2**(-L), L=0,1,2, ..., MOMCOM-1,
|
|
C MOMCOM.LT.MAXP1
|
|
C
|
|
C CHEBMO - Real
|
|
C Array of dimension (MAXP1,25) containing the
|
|
C Chebyshev moments
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED QC25F, QELG, QPSRT, R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QAWOE
|
|
C
|
|
REAL A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
|
|
1 A2,B,BLIST,B1,B2,CHEBMO,CORREC,DEFAB1,DEFAB2,DEFABS,
|
|
2 DOMEGA,R1MACH,DRES,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,
|
|
3 ERLAST,ERRBND,ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,
|
|
4 OMEGA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SMALL,UFLOW,WIDTH
|
|
INTEGER ICALL,ID,IER,IERRO,INTEGR,IORD,IROFF1,IROFF2,IROFF3,
|
|
1 JUPBND,K,KSGN,KTMIN,LAST,LIMIT,MAXERR,MAXP1,MOMCOM,NEV,
|
|
2 NEVAL,NNLOG,NRES,NRMAX,NRMOM,NUMRL2
|
|
LOGICAL EXTRAP,NOEXT,EXTALL
|
|
C
|
|
DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
|
|
1 IORD(*),RLIST2(52),RES3LA(3),CHEBMO(MAXP1,25),NNLOG(*)
|
|
C
|
|
EXTERNAL F
|
|
C
|
|
C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
|
|
C LIMEXP IN SUBROUTINE QELG (RLIST2 SHOULD BE OF
|
|
C DIMENSION (LIMEXP+2) AT LEAST).
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
|
|
C CONSIDERED UP TO NOW
|
|
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
|
|
C (ALIST(I),BLIST(I))
|
|
C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
|
|
C CONTAINING THE PART OF THE EPSILON TABLE
|
|
C WHICH IS STILL NEEDED FOR FURTHER COMPUTATIONS
|
|
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
|
|
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
|
|
C ERROR ESTIMATE
|
|
C ERRMAX - ELIST(MAXERR)
|
|
C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
|
|
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
|
|
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
|
|
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
|
|
C ABS(RESULT))
|
|
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
|
|
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
|
|
C LAST - INDEX FOR SUBDIVISION
|
|
C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
|
|
C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN APPROPRIATE
|
|
C APPROXIMATION TO THE COMPOUNDED INTEGRAL HAS
|
|
C BEEN OBTAINED IT IS PUT IN RLIST2(NUMRL2) AFTER
|
|
C NUMRL2 HAS BEEN INCREASED BY ONE
|
|
C SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED
|
|
C UP TO NOW, MULTIPLIED BY 1.5
|
|
C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
|
|
C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
|
|
C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE IS
|
|
C ATTEMPTING TO PERFORM EXTRAPOLATION, I.E. BEFORE
|
|
C SUBDIVIDING THE SMALLEST INTERVAL WE TRY TO
|
|
C DECREASE THE VALUE OF ERLARG
|
|
C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
|
|
C IS NO LONGER ALLOWED (TRUE VALUE)
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QAWOE
|
|
EPMACH = R1MACH(4)
|
|
C
|
|
C TEST ON VALIDITY OF PARAMETERS
|
|
C ------------------------------
|
|
C
|
|
IER = 0
|
|
NEVAL = 0
|
|
LAST = 0
|
|
RESULT = 0.0E+00
|
|
ABSERR = 0.0E+00
|
|
ALIST(1) = A
|
|
BLIST(1) = B
|
|
RLIST(1) = 0.0E+00
|
|
ELIST(1) = 0.0E+00
|
|
IORD(1) = 0
|
|
NNLOG(1) = 0
|
|
IF((INTEGR.NE.1.AND.INTEGR.NE.2).OR.(EPSABS.LE.0.0E+00.AND.
|
|
1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14)).OR.ICALL.LT.1.OR.
|
|
2 MAXP1.LT.1) IER = 6
|
|
IF(IER.EQ.6) GO TO 999
|
|
C
|
|
C FIRST APPROXIMATION TO THE INTEGRAL
|
|
C -----------------------------------
|
|
C
|
|
DOMEGA = ABS(OMEGA)
|
|
NRMOM = 0
|
|
IF (ICALL.GT.1) GO TO 5
|
|
MOMCOM = 0
|
|
5 CALL QC25F(F,A,B,DOMEGA,INTEGR,NRMOM,MAXP1,0,RESULT,ABSERR,
|
|
1 NEVAL,DEFABS,RESABS,MOMCOM,CHEBMO)
|
|
C
|
|
C TEST ON ACCURACY.
|
|
C
|
|
DRES = ABS(RESULT)
|
|
ERRBND = MAX(EPSABS,EPSREL*DRES)
|
|
RLIST(1) = RESULT
|
|
ELIST(1) = ABSERR
|
|
IORD(1) = 1
|
|
IF(ABSERR.LE.0.1E+03*EPMACH*DEFABS.AND.ABSERR.GT.
|
|
1 ERRBND) IER = 2
|
|
IF(LIMIT.EQ.1) IER = 1
|
|
IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 200
|
|
C
|
|
C INITIALIZATIONS
|
|
C ---------------
|
|
C
|
|
UFLOW = R1MACH(1)
|
|
OFLOW = R1MACH(2)
|
|
ERRMAX = ABSERR
|
|
MAXERR = 1
|
|
AREA = RESULT
|
|
ERRSUM = ABSERR
|
|
ABSERR = OFLOW
|
|
NRMAX = 1
|
|
EXTRAP = .FALSE.
|
|
NOEXT = .FALSE.
|
|
IERRO = 0
|
|
IROFF1 = 0
|
|
IROFF2 = 0
|
|
IROFF3 = 0
|
|
KTMIN = 0
|
|
SMALL = ABS(B-A)*0.75E+00
|
|
NRES = 0
|
|
NUMRL2 = 0
|
|
EXTALL = .FALSE.
|
|
IF(0.5E+00*ABS(B-A)*DOMEGA.GT.0.2E+01) GO TO 10
|
|
NUMRL2 = 1
|
|
EXTALL = .TRUE.
|
|
RLIST2(1) = RESULT
|
|
10 IF(0.25E+00*ABS(B-A)*DOMEGA.LE.0.2E+01) EXTALL = .TRUE.
|
|
KSGN = -1
|
|
IF(DRES.GE.(0.1E+01-0.5E+02*EPMACH)*DEFABS) KSGN = 1
|
|
C
|
|
C MAIN DO-LOOP
|
|
C ------------
|
|
C
|
|
DO 140 LAST = 2,LIMIT
|
|
C
|
|
C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
|
|
C ERROR ESTIMATE.
|
|
C
|
|
NRMOM = NNLOG(MAXERR)+1
|
|
A1 = ALIST(MAXERR)
|
|
B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
|
|
A2 = B1
|
|
B2 = BLIST(MAXERR)
|
|
ERLAST = ERRMAX
|
|
CALL QC25F(F,A1,B1,DOMEGA,INTEGR,NRMOM,MAXP1,0,
|
|
1 AREA1,ERROR1,NEV,RESABS,DEFAB1,MOMCOM,CHEBMO)
|
|
NEVAL = NEVAL+NEV
|
|
CALL QC25F(F,A2,B2,DOMEGA,INTEGR,NRMOM,MAXP1,1,
|
|
1 AREA2,ERROR2,NEV,RESABS,DEFAB2,MOMCOM,CHEBMO)
|
|
NEVAL = NEVAL+NEV
|
|
C
|
|
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
|
|
C AND ERROR AND TEST FOR ACCURACY.
|
|
C
|
|
AREA12 = AREA1+AREA2
|
|
ERRO12 = ERROR1+ERROR2
|
|
ERRSUM = ERRSUM+ERRO12-ERRMAX
|
|
AREA = AREA+AREA12-RLIST(MAXERR)
|
|
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 25
|
|
IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1E-04*ABS(AREA12)
|
|
1 .OR.ERRO12.LT.0.99E+00*ERRMAX) GO TO 20
|
|
IF(EXTRAP) IROFF2 = IROFF2+1
|
|
IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
|
|
20 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
|
|
25 RLIST(MAXERR) = AREA1
|
|
RLIST(LAST) = AREA2
|
|
NNLOG(MAXERR) = NRMOM
|
|
NNLOG(LAST) = NRMOM
|
|
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
|
|
C
|
|
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
|
|
C SET ERROR FLAG
|
|
C
|
|
IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
|
|
IF(IROFF2.GE.5) IERRO = 3
|
|
C
|
|
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
|
|
C SUBINTERVALS EQUALS LIMIT.
|
|
C
|
|
IF(LAST.EQ.LIMIT) IER = 1
|
|
C
|
|
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
|
|
C AT A POINT OF THE INTEGRATION RANGE.
|
|
C
|
|
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)
|
|
1 *(ABS(A2)+0.1E+04*UFLOW)) IER = 4
|
|
C
|
|
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
|
|
C
|
|
IF(ERROR2.GT.ERROR1) GO TO 30
|
|
ALIST(LAST) = A2
|
|
BLIST(MAXERR) = B1
|
|
BLIST(LAST) = B2
|
|
ELIST(MAXERR) = ERROR1
|
|
ELIST(LAST) = ERROR2
|
|
GO TO 40
|
|
30 ALIST(MAXERR) = A2
|
|
ALIST(LAST) = A1
|
|
BLIST(LAST) = B1
|
|
RLIST(MAXERR) = AREA2
|
|
RLIST(LAST) = AREA1
|
|
ELIST(MAXERR) = ERROR2
|
|
ELIST(LAST) = ERROR1
|
|
C
|
|
C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
|
|
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
|
|
C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
|
|
C BISECTED NEXT).
|
|
C
|
|
40 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
|
|
C ***JUMP OUT OF DO-LOOP
|
|
IF(ERRSUM.LE.ERRBND) GO TO 170
|
|
IF(IER.NE.0) GO TO 150
|
|
IF(LAST.EQ.2.AND.EXTALL) GO TO 120
|
|
IF(NOEXT) GO TO 140
|
|
IF(.NOT.EXTALL) GO TO 50
|
|
ERLARG = ERLARG-ERLAST
|
|
IF(ABS(B1-A1).GT.SMALL) ERLARG = ERLARG+ERRO12
|
|
IF(EXTRAP) GO TO 70
|
|
C
|
|
C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
|
|
C SMALLEST INTERVAL.
|
|
C
|
|
50 WIDTH = ABS(BLIST(MAXERR)-ALIST(MAXERR))
|
|
IF(WIDTH.GT.SMALL) GO TO 140
|
|
IF(EXTALL) GO TO 60
|
|
C
|
|
C TEST WHETHER WE CAN START WITH THE EXTRAPOLATION
|
|
C PROCEDURE (WE DO THIS IF WE INTEGRATE OVER THE
|
|
C NEXT INTERVAL WITH USE OF A GAUSS-KRONROD RULE - SEE
|
|
C SUBROUTINE QC25F).
|
|
C
|
|
SMALL = SMALL*0.5E+00
|
|
IF(0.25E+00*WIDTH*DOMEGA.GT.0.2E+01) GO TO 140
|
|
EXTALL = .TRUE.
|
|
GO TO 130
|
|
60 EXTRAP = .TRUE.
|
|
NRMAX = 2
|
|
70 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 90
|
|
C
|
|
C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
|
|
C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
|
|
C OVER THE LARGER INTERVALS (ERLARG) AND PERFORM
|
|
C EXTRAPOLATION.
|
|
C
|
|
JUPBND = LAST
|
|
IF (LAST.GT.(LIMIT/2+2)) JUPBND = LIMIT+3-LAST
|
|
ID = NRMAX
|
|
DO 80 K = ID,JUPBND
|
|
MAXERR = IORD(NRMAX)
|
|
ERRMAX = ELIST(MAXERR)
|
|
IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 140
|
|
NRMAX = NRMAX+1
|
|
80 CONTINUE
|
|
C
|
|
C PERFORM EXTRAPOLATION.
|
|
C
|
|
90 NUMRL2 = NUMRL2+1
|
|
RLIST2(NUMRL2) = AREA
|
|
IF(NUMRL2.LT.3) GO TO 110
|
|
CALL QELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
|
|
KTMIN = KTMIN+1
|
|
IF(KTMIN.GT.5.AND.ABSERR.LT.0.1E-02*ERRSUM) IER = 5
|
|
IF(ABSEPS.GE.ABSERR) GO TO 100
|
|
KTMIN = 0
|
|
ABSERR = ABSEPS
|
|
RESULT = RESEPS
|
|
CORREC = ERLARG
|
|
ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
|
|
C ***JUMP OUT OF DO-LOOP
|
|
IF(ABSERR.LE.ERTEST) GO TO 150
|
|
C
|
|
C PREPARE BISECTION OF THE SMALLEST INTERVAL.
|
|
C
|
|
100 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
|
|
IF(IER.EQ.5) GO TO 150
|
|
110 MAXERR = IORD(1)
|
|
ERRMAX = ELIST(MAXERR)
|
|
NRMAX = 1
|
|
EXTRAP = .FALSE.
|
|
SMALL = SMALL*0.5E+00
|
|
ERLARG = ERRSUM
|
|
GO TO 140
|
|
120 SMALL = SMALL*0.5E+00
|
|
NUMRL2 = NUMRL2+1
|
|
RLIST2(NUMRL2) = AREA
|
|
130 ERTEST = ERRBND
|
|
ERLARG = ERRSUM
|
|
140 CONTINUE
|
|
C
|
|
C SET THE FINAL RESULT.
|
|
C ---------------------
|
|
C
|
|
150 IF(ABSERR.EQ.OFLOW.OR.NRES.EQ.0) GO TO 170
|
|
IF(IER+IERRO.EQ.0) GO TO 165
|
|
IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
|
|
IF(IER.EQ.0) IER = 3
|
|
IF(RESULT.NE.0.0E+00.AND.AREA.NE.0.0E+00) GO TO 160
|
|
IF(ABSERR.GT.ERRSUM) GO TO 170
|
|
IF(AREA.EQ.0.0E+00) GO TO 190
|
|
GO TO 165
|
|
160 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA)) GO TO 170
|
|
C
|
|
C TEST ON DIVERGENCE.
|
|
C
|
|
165 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
|
|
1 DEFABS*0.1E-01) GO TO 190
|
|
IF(0.1E-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1E+03
|
|
1 .OR.ERRSUM.GE.ABS(AREA)) IER = 6
|
|
GO TO 190
|
|
C
|
|
C COMPUTE GLOBAL INTEGRAL SUM.
|
|
C
|
|
170 RESULT = 0.0E+00
|
|
DO 180 K=1,LAST
|
|
RESULT = RESULT+RLIST(K)
|
|
180 CONTINUE
|
|
ABSERR = ERRSUM
|
|
190 IF (IER.GT.2) IER=IER-1
|
|
200 IF (INTEGR.EQ.2.AND.OMEGA.LT.0.0E+00) RESULT=-RESULT
|
|
999 RETURN
|
|
END
|