mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
202 lines
7.8 KiB
Fortran
202 lines
7.8 KiB
Fortran
*DECK QK51
|
|
SUBROUTINE QK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
|
|
C***BEGIN PROLOGUE QK51
|
|
C***PURPOSE To compute I = Integral of F over (A,B) with error
|
|
C estimate
|
|
C J = Integral of ABS(F) over (A,B)
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A1A2
|
|
C***TYPE SINGLE PRECISION (QK51-S, DQK51-D)
|
|
C***KEYWORDS 51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C Integration rules
|
|
C Standard fortran subroutine
|
|
C Real version
|
|
C
|
|
C PARAMETERS
|
|
C ON ENTRY
|
|
C F - Real
|
|
C Function subroutine defining the integrand
|
|
C function F(X). The actual name for F needs to be
|
|
C declared E X T E R N A L in the calling program.
|
|
C
|
|
C A - Real
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real
|
|
C Upper limit of integration
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral I
|
|
C RESULT is computed by applying the 51-point
|
|
C Kronrod rule (RESK) obtained by optimal addition
|
|
C of abscissae to the 25-point Gauss rule (RESG).
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should not exceed ABS(I-RESULT)
|
|
C
|
|
C RESABS - Real
|
|
C Approximation to the integral J
|
|
C
|
|
C RESASC - Real
|
|
C Approximation to the integral of ABS(F-I/(B-A))
|
|
C over (A,B)
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED R1MACH
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C***END PROLOGUE QK51
|
|
C
|
|
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
|
|
1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,
|
|
2 WG,WGK,XGK
|
|
INTEGER J,JTW,JTWM1
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION FV1(25),FV2(25),XGK(26),WGK(26),WG(13)
|
|
C
|
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
|
C
|
|
C XGK - ABSCISSAE OF THE 51-POINT KRONROD RULE
|
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 25-POINT
|
|
C GAUSS RULE
|
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
|
C ADDED TO THE 25-POINT GAUSS RULE
|
|
C
|
|
C WGK - WEIGHTS OF THE 51-POINT KRONROD RULE
|
|
C
|
|
C WG - WEIGHTS OF THE 25-POINT GAUSS RULE
|
|
C
|
|
SAVE XGK, WGK, WG
|
|
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8),
|
|
1 XGK(9),XGK(10),XGK(11),XGK(12),XGK(13),XGK(14)/
|
|
2 0.9992621049926098E+00, 0.9955569697904981E+00,
|
|
3 0.9880357945340772E+00, 0.9766639214595175E+00,
|
|
4 0.9616149864258425E+00, 0.9429745712289743E+00,
|
|
5 0.9207471152817016E+00, 0.8949919978782754E+00,
|
|
6 0.8658470652932756E+00, 0.8334426287608340E+00,
|
|
7 0.7978737979985001E+00, 0.7592592630373576E+00,
|
|
8 0.7177664068130844E+00, 0.6735663684734684E+00/
|
|
DATA XGK(15),XGK(16),XGK(17),XGK(18),XGK(19),XGK(20),XGK(21),
|
|
1 XGK(22),XGK(23),XGK(24),XGK(25),XGK(26)/
|
|
2 0.6268100990103174E+00, 0.5776629302412230E+00,
|
|
3 0.5263252843347192E+00, 0.4730027314457150E+00,
|
|
4 0.4178853821930377E+00, 0.3611723058093878E+00,
|
|
5 0.3030895389311078E+00, 0.2438668837209884E+00,
|
|
6 0.1837189394210489E+00, 0.1228646926107104E+00,
|
|
7 0.6154448300568508E-01, 0.0E+00 /
|
|
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8),
|
|
1 WGK(9),WGK(10),WGK(11),WGK(12),WGK(13),WGK(14)/
|
|
2 0.1987383892330316E-02, 0.5561932135356714E-02,
|
|
3 0.9473973386174152E-02, 0.1323622919557167E-01,
|
|
4 0.1684781770912830E-01, 0.2043537114588284E-01,
|
|
5 0.2400994560695322E-01, 0.2747531758785174E-01,
|
|
6 0.3079230016738749E-01, 0.3400213027432934E-01,
|
|
7 0.3711627148341554E-01, 0.4008382550403238E-01,
|
|
8 0.4287284502017005E-01, 0.4550291304992179E-01/
|
|
DATA WGK(15),WGK(16),WGK(17),WGK(18),WGK(19),WGK(20),WGK(21)
|
|
1 ,WGK(22),WGK(23),WGK(24),WGK(25),WGK(26)/
|
|
2 0.4798253713883671E-01, 0.5027767908071567E-01,
|
|
3 0.5236288580640748E-01, 0.5425112988854549E-01,
|
|
4 0.5595081122041232E-01, 0.5743711636156783E-01,
|
|
5 0.5868968002239421E-01, 0.5972034032417406E-01,
|
|
6 0.6053945537604586E-01, 0.6112850971705305E-01,
|
|
7 0.6147118987142532E-01, 0.6158081806783294E-01/
|
|
DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8),WG(9),
|
|
1 WG(10),WG(11),WG(12),WG(13)/
|
|
2 0.1139379850102629E-01, 0.2635498661503214E-01,
|
|
3 0.4093915670130631E-01, 0.5490469597583519E-01,
|
|
4 0.6803833381235692E-01, 0.8014070033500102E-01,
|
|
5 0.9102826198296365E-01, 0.1005359490670506E+00,
|
|
6 0.1085196244742637E+00, 0.1148582591457116E+00,
|
|
7 0.1194557635357848E+00, 0.1222424429903100E+00,
|
|
8 0.1231760537267155E+00/
|
|
C
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C CENTR - MID POINT OF THE INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
|
C ABSC - ABSCISSA
|
|
C FVAL* - FUNCTION VALUE
|
|
C RESG - RESULT OF THE 25-POINT GAUSS FORMULA
|
|
C RESK - RESULT OF THE 51-POINT KRONROD FORMULA
|
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
|
|
C I.E. TO I/(B-A)
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QK51
|
|
EPMACH = R1MACH(4)
|
|
UFLOW = R1MACH(1)
|
|
C
|
|
CENTR = 0.5E+00*(A+B)
|
|
HLGTH = 0.5E+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
C
|
|
C COMPUTE THE 51-POINT KRONROD APPROXIMATION TO
|
|
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
|
|
C
|
|
FC = F(CENTR)
|
|
RESG = WG(13)*FC
|
|
RESK = WGK(26)*FC
|
|
RESABS = ABS(RESK)
|
|
DO 10 J=1,12
|
|
JTW = J*2
|
|
ABSC = HLGTH*XGK(JTW)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTW) = FVAL1
|
|
FV2(JTW) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESG = RESG+WG(J)*FSUM
|
|
RESK = RESK+WGK(JTW)*FSUM
|
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
|
10 CONTINUE
|
|
DO 15 J = 1,13
|
|
JTWM1 = J*2-1
|
|
ABSC = HLGTH*XGK(JTWM1)
|
|
FVAL1 = F(CENTR-ABSC)
|
|
FVAL2 = F(CENTR+ABSC)
|
|
FV1(JTWM1) = FVAL1
|
|
FV2(JTWM1) = FVAL2
|
|
FSUM = FVAL1+FVAL2
|
|
RESK = RESK+WGK(JTWM1)*FSUM
|
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
|
15 CONTINUE
|
|
RESKH = RESK*0.5E+00
|
|
RESASC = WGK(26)*ABS(FC-RESKH)
|
|
DO 20 J=1,25
|
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
|
20 CONTINUE
|
|
RESULT = RESK*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESASC = RESASC*DHLGTH
|
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
|
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
|
|
1 ABSERR = RESASC*MIN(0.1E+01,
|
|
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
|
|
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
|
|
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
|
|
RETURN
|
|
END
|