mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
348 lines
14 KiB
Fortran
348 lines
14 KiB
Fortran
*DECK QNG
|
|
SUBROUTINE QNG (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
|
|
+ IER)
|
|
C***BEGIN PROLOGUE QNG
|
|
C***PURPOSE The routine calculates an approximation result to a
|
|
C given definite integral I = integral of F over (A,B),
|
|
C hopefully satisfying following claim for accuracy
|
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
|
C***LIBRARY SLATEC (QUADPACK)
|
|
C***CATEGORY H2A1A1
|
|
C***TYPE SINGLE PRECISION (QNG-S, DQNG-D)
|
|
C***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD(PATTERSON) RULES,
|
|
C NONADAPTIVE, QUADPACK, QUADRATURE, SMOOTH INTEGRAND
|
|
C***AUTHOR Piessens, Robert
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C de Doncker, Elise
|
|
C Applied Mathematics and Programming Division
|
|
C K. U. Leuven
|
|
C***DESCRIPTION
|
|
C
|
|
C NON-ADAPTIVE INTEGRATION
|
|
C STANDARD FORTRAN SUBROUTINE
|
|
C REAL VERSION
|
|
C
|
|
C F - Real version
|
|
C Function subprogram defining the integrand function
|
|
C F(X). The actual name for F needs to be declared
|
|
C E X T E R N A L in the driver program.
|
|
C
|
|
C A - Real version
|
|
C Lower limit of integration
|
|
C
|
|
C B - Real version
|
|
C Upper limit of integration
|
|
C
|
|
C EPSABS - Real
|
|
C Absolute accuracy requested
|
|
C EPSREL - Real
|
|
C Relative accuracy requested
|
|
C If EPSABS.LE.0
|
|
C And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
|
C The routine will end with IER = 6.
|
|
C
|
|
C ON RETURN
|
|
C RESULT - Real
|
|
C Approximation to the integral I
|
|
C Result is obtained by applying the 21-POINT
|
|
C GAUSS-KRONROD RULE (RES21) obtained by optimal
|
|
C addition of abscissae to the 10-POINT GAUSS RULE
|
|
C (RES10), or by applying the 43-POINT RULE (RES43)
|
|
C obtained by optimal addition of abscissae to the
|
|
C 21-POINT GAUSS-KRONROD RULE, or by applying the
|
|
C 87-POINT RULE (RES87) obtained by optimal addition
|
|
C of abscissae to the 43-POINT RULE.
|
|
C
|
|
C ABSERR - Real
|
|
C Estimate of the modulus of the absolute error,
|
|
C which should EQUAL or EXCEED ABS(I-RESULT)
|
|
C
|
|
C NEVAL - Integer
|
|
C Number of integrand evaluations
|
|
C
|
|
C IER - IER = 0 normal and reliable termination of the
|
|
C routine. It is assumed that the requested
|
|
C accuracy has been achieved.
|
|
C IER.GT.0 Abnormal termination of the routine. It is
|
|
C assumed that the requested accuracy has
|
|
C not been achieved.
|
|
C ERROR MESSAGES
|
|
C IER = 1 The maximum number of steps has been
|
|
C executed. The integral is probably too
|
|
C difficult to be calculated by DQNG.
|
|
C = 6 The input is invalid, because
|
|
C EPSABS.LE.0 AND
|
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
|
|
C RESULT, ABSERR and NEVAL are set to zero.
|
|
C
|
|
C***REFERENCES (NONE)
|
|
C***ROUTINES CALLED R1MACH, XERMSG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 800101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890531 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
|
C***END PROLOGUE QNG
|
|
C
|
|
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,EPSABS,EPSREL,F,FCENTR,
|
|
1 FVAL,FVAL1,FVAL2,FV1,FV2,FV3,FV4,HLGTH,RESULT,RES10,RES21,RES43,
|
|
2 RES87,RESABS,RESASC,RESKH,R1MACH,SAVFUN,UFLOW,W10,W21A,W43A,
|
|
3 W43B,W87A,W87B,X1,X2,X3,X4
|
|
INTEGER IER,IPX,K,L,NEVAL
|
|
EXTERNAL F
|
|
C
|
|
DIMENSION FV1(5),FV2(5),FV3(5),FV4(5),X1(5),X2(5),X3(11),X4(22),
|
|
1 W10(5),W21A(5),W21B(6),W43A(10),W43B(12),W87A(21),W87B(23),
|
|
2 SAVFUN(21)
|
|
C
|
|
C THE FOLLOWING DATA STATEMENTS CONTAIN THE
|
|
C ABSCISSAE AND WEIGHTS OF THE INTEGRATION RULES USED.
|
|
C
|
|
C X1 ABSCISSAE COMMON TO THE 10-, 21-, 43-
|
|
C AND 87-POINT RULE
|
|
C X2 ABSCISSAE COMMON TO THE 21-, 43- AND
|
|
C 87-POINT RULE
|
|
C X3 ABSCISSAE COMMON TO THE 43- AND 87-POINT
|
|
C RULE
|
|
C X4 ABSCISSAE OF THE 87-POINT RULE
|
|
C W10 WEIGHTS OF THE 10-POINT FORMULA
|
|
C W21A WEIGHTS OF THE 21-POINT FORMULA FOR
|
|
C ABSCISSAE X1
|
|
C W21B WEIGHTS OF THE 21-POINT FORMULA FOR
|
|
C ABSCISSAE X2
|
|
C W43A WEIGHTS OF THE 43-POINT FORMULA FOR
|
|
C ABSCISSAE X1, X3
|
|
C W43B WEIGHTS OF THE 43-POINT FORMULA FOR
|
|
C ABSCISSAE X3
|
|
C W87A WEIGHTS OF THE 87-POINT FORMULA FOR
|
|
C ABSCISSAE X1, X2, X3
|
|
C W87B WEIGHTS OF THE 87-POINT FORMULA FOR
|
|
C ABSCISSAE X4
|
|
C
|
|
SAVE X1, X2, X3, X4, W10, W21A, W21B, W43A, W43B, W87A, W87B
|
|
DATA X1(1),X1(2),X1(3),X1(4),X1(5)/
|
|
1 0.9739065285171717E+00, 0.8650633666889845E+00,
|
|
2 0.6794095682990244E+00, 0.4333953941292472E+00,
|
|
3 0.1488743389816312E+00/
|
|
DATA X2(1),X2(2),X2(3),X2(4),X2(5)/
|
|
1 0.9956571630258081E+00, 0.9301574913557082E+00,
|
|
2 0.7808177265864169E+00, 0.5627571346686047E+00,
|
|
3 0.2943928627014602E+00/
|
|
DATA X3(1),X3(2),X3(3),X3(4),X3(5),X3(6),X3(7),X3(8),
|
|
1 X3(9),X3(10),X3(11)/
|
|
2 0.9993333609019321E+00, 0.9874334029080889E+00,
|
|
3 0.9548079348142663E+00, 0.9001486957483283E+00,
|
|
4 0.8251983149831142E+00, 0.7321483889893050E+00,
|
|
5 0.6228479705377252E+00, 0.4994795740710565E+00,
|
|
6 0.3649016613465808E+00, 0.2222549197766013E+00,
|
|
7 0.7465061746138332E-01/
|
|
DATA X4(1),X4(2),X4(3),X4(4),X4(5),X4(6),X4(7),X4(8),X4(9),
|
|
1 X4(10),X4(11),X4(12),X4(13),X4(14),X4(15),X4(16),X4(17),X4(18),
|
|
2 X4(19),X4(20),X4(21),X4(22)/ 0.9999029772627292E+00,
|
|
3 0.9979898959866787E+00, 0.9921754978606872E+00,
|
|
4 0.9813581635727128E+00, 0.9650576238583846E+00,
|
|
5 0.9431676131336706E+00, 0.9158064146855072E+00,
|
|
6 0.8832216577713165E+00, 0.8457107484624157E+00,
|
|
7 0.8035576580352310E+00, 0.7570057306854956E+00,
|
|
8 0.7062732097873218E+00, 0.6515894665011779E+00,
|
|
9 0.5932233740579611E+00, 0.5314936059708319E+00,
|
|
1 0.4667636230420228E+00, 0.3994248478592188E+00,
|
|
2 0.3298748771061883E+00, 0.2585035592021616E+00,
|
|
3 0.1856953965683467E+00, 0.1118422131799075E+00,
|
|
4 0.3735212339461987E-01/
|
|
DATA W10(1),W10(2),W10(3),W10(4),W10(5)/
|
|
1 0.6667134430868814E-01, 0.1494513491505806E+00,
|
|
2 0.2190863625159820E+00, 0.2692667193099964E+00,
|
|
3 0.2955242247147529E+00/
|
|
DATA W21A(1),W21A(2),W21A(3),W21A(4),W21A(5)/
|
|
1 0.3255816230796473E-01, 0.7503967481091995E-01,
|
|
2 0.1093871588022976E+00, 0.1347092173114733E+00,
|
|
3 0.1477391049013385E+00/
|
|
DATA W21B(1),W21B(2),W21B(3),W21B(4),W21B(5),W21B(6)/
|
|
1 0.1169463886737187E-01, 0.5475589657435200E-01,
|
|
2 0.9312545458369761E-01, 0.1234919762620659E+00,
|
|
3 0.1427759385770601E+00, 0.1494455540029169E+00/
|
|
DATA W43A(1),W43A(2),W43A(3),W43A(4),W43A(5),W43A(6),W43A(7),
|
|
1 W43A(8),W43A(9),W43A(10)/ 0.1629673428966656E-01,
|
|
2 0.3752287612086950E-01, 0.5469490205825544E-01,
|
|
3 0.6735541460947809E-01, 0.7387019963239395E-01,
|
|
4 0.5768556059769796E-02, 0.2737189059324884E-01,
|
|
5 0.4656082691042883E-01, 0.6174499520144256E-01,
|
|
6 0.7138726726869340E-01/
|
|
DATA W43B(1),W43B(2),W43B(3),W43B(4),W43B(5),W43B(6),
|
|
1 W43B(7),W43B(8),W43B(9),W43B(10),W43B(11),W43B(12)/
|
|
2 0.1844477640212414E-02, 0.1079868958589165E-01,
|
|
3 0.2189536386779543E-01, 0.3259746397534569E-01,
|
|
4 0.4216313793519181E-01, 0.5074193960018458E-01,
|
|
5 0.5837939554261925E-01, 0.6474640495144589E-01,
|
|
6 0.6956619791235648E-01, 0.7282444147183321E-01,
|
|
7 0.7450775101417512E-01, 0.7472214751740301E-01/
|
|
DATA W87A(1),W87A(2),W87A(3),W87A(4),W87A(5),W87A(6),
|
|
1 W87A(7),W87A(8),W87A(9),W87A(10),W87A(11),W87A(12),
|
|
2 W87A(13),W87A(14),W87A(15),W87A(16),W87A(17),W87A(18),
|
|
3 W87A(19),W87A(20),W87A(21)/
|
|
4 0.8148377384149173E-02, 0.1876143820156282E-01,
|
|
5 0.2734745105005229E-01, 0.3367770731163793E-01,
|
|
6 0.3693509982042791E-01, 0.2884872430211531E-02,
|
|
7 0.1368594602271270E-01, 0.2328041350288831E-01,
|
|
8 0.3087249761171336E-01, 0.3569363363941877E-01,
|
|
9 0.9152833452022414E-03, 0.5399280219300471E-02,
|
|
1 0.1094767960111893E-01, 0.1629873169678734E-01,
|
|
2 0.2108156888920384E-01, 0.2537096976925383E-01,
|
|
3 0.2918969775647575E-01, 0.3237320246720279E-01,
|
|
4 0.3478309895036514E-01, 0.3641222073135179E-01,
|
|
5 0.3725387550304771E-01/
|
|
DATA W87B(1),W87B(2),W87B(3),W87B(4),W87B(5),W87B(6),W87B(7),
|
|
1 W87B(8),W87B(9),W87B(10),W87B(11),W87B(12),W87B(13),W87B(14),
|
|
2 W87B(15),W87B(16),W87B(17),W87B(18),W87B(19),W87B(20),
|
|
3 W87B(21),W87B(22),W87B(23)/ 0.2741455637620724E-03,
|
|
4 0.1807124155057943E-02, 0.4096869282759165E-02,
|
|
5 0.6758290051847379E-02, 0.9549957672201647E-02,
|
|
6 0.1232944765224485E-01, 0.1501044734638895E-01,
|
|
7 0.1754896798624319E-01, 0.1993803778644089E-01,
|
|
8 0.2219493596101229E-01, 0.2433914712600081E-01,
|
|
9 0.2637450541483921E-01, 0.2828691078877120E-01,
|
|
1 0.3005258112809270E-01, 0.3164675137143993E-01,
|
|
2 0.3305041341997850E-01, 0.3425509970422606E-01,
|
|
3 0.3526241266015668E-01, 0.3607698962288870E-01,
|
|
4 0.3669860449845609E-01, 0.3712054926983258E-01,
|
|
5 0.3733422875193504E-01, 0.3736107376267902E-01/
|
|
C
|
|
C LIST OF MAJOR VARIABLES
|
|
C -----------------------
|
|
C
|
|
C CENTR - MID POINT OF THE INTEGRATION INTERVAL
|
|
C HLGTH - HALF-LENGTH OF THE INTEGRATION INTERVAL
|
|
C FCENTR - FUNCTION VALUE AT MID POINT
|
|
C ABSC - ABSCISSA
|
|
C FVAL - FUNCTION VALUE
|
|
C SAVFUN - ARRAY OF FUNCTION VALUES WHICH
|
|
C HAVE ALREADY BEEN COMPUTED
|
|
C RES10 - 10-POINT GAUSS RESULT
|
|
C RES21 - 21-POINT KRONROD RESULT
|
|
C RES43 - 43-POINT RESULT
|
|
C RES87 - 87-POINT RESULT
|
|
C RESABS - APPROXIMATION TO THE INTEGRAL OF ABS(F)
|
|
C RESASC - APPROXIMATION TO THE INTEGRAL OF ABS(F-I/(B-A))
|
|
C
|
|
C MACHINE DEPENDENT CONSTANTS
|
|
C ---------------------------
|
|
C
|
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT QNG
|
|
EPMACH = R1MACH(4)
|
|
UFLOW = R1MACH(1)
|
|
C
|
|
C TEST ON VALIDITY OF PARAMETERS
|
|
C ------------------------------
|
|
C
|
|
RESULT = 0.0E+00
|
|
ABSERR = 0.0E+00
|
|
NEVAL = 0
|
|
IER = 6
|
|
IF(EPSABS.LE.0.0E+00.AND.EPSREL.LT.MAX(0.5E-14,0.5E+02*EPMACH))
|
|
1 GO TO 80
|
|
HLGTH = 0.5E+00*(B-A)
|
|
DHLGTH = ABS(HLGTH)
|
|
CENTR = 0.5E+00*(B+A)
|
|
FCENTR = F(CENTR)
|
|
NEVAL = 21
|
|
IER = 1
|
|
C
|
|
C COMPUTE THE INTEGRAL USING THE 10- AND 21-POINT FORMULA.
|
|
C
|
|
DO 70 L = 1,3
|
|
GO TO (5,25,45),L
|
|
5 RES10 = 0.0E+00
|
|
RES21 = W21B(6)*FCENTR
|
|
RESABS = W21B(6)*ABS(FCENTR)
|
|
DO 10 K=1,5
|
|
ABSC = HLGTH*X1(K)
|
|
FVAL1 = F(CENTR+ABSC)
|
|
FVAL2 = F(CENTR-ABSC)
|
|
FVAL = FVAL1+FVAL2
|
|
RES10 = RES10+W10(K)*FVAL
|
|
RES21 = RES21+W21A(K)*FVAL
|
|
RESABS = RESABS+W21A(K)*(ABS(FVAL1)+ABS(FVAL2))
|
|
SAVFUN(K) = FVAL
|
|
FV1(K) = FVAL1
|
|
FV2(K) = FVAL2
|
|
10 CONTINUE
|
|
IPX = 5
|
|
DO 15 K=1,5
|
|
IPX = IPX+1
|
|
ABSC = HLGTH*X2(K)
|
|
FVAL1 = F(CENTR+ABSC)
|
|
FVAL2 = F(CENTR-ABSC)
|
|
FVAL = FVAL1+FVAL2
|
|
RES21 = RES21+W21B(K)*FVAL
|
|
RESABS = RESABS+W21B(K)*(ABS(FVAL1)+ABS(FVAL2))
|
|
SAVFUN(IPX) = FVAL
|
|
FV3(K) = FVAL1
|
|
FV4(K) = FVAL2
|
|
15 CONTINUE
|
|
C
|
|
C TEST FOR CONVERGENCE.
|
|
C
|
|
RESULT = RES21*HLGTH
|
|
RESABS = RESABS*DHLGTH
|
|
RESKH = 0.5E+00*RES21
|
|
RESASC = W21B(6)*ABS(FCENTR-RESKH)
|
|
DO 20 K = 1,5
|
|
RESASC = RESASC+W21A(K)*(ABS(FV1(K)-RESKH)+ABS(FV2(K)-RESKH))
|
|
1 +W21B(K)*(ABS(FV3(K)-RESKH)+ABS(FV4(K)-RESKH))
|
|
20 CONTINUE
|
|
ABSERR = ABS((RES21-RES10)*HLGTH)
|
|
RESASC = RESASC*DHLGTH
|
|
GO TO 65
|
|
C
|
|
C COMPUTE THE INTEGRAL USING THE 43-POINT FORMULA.
|
|
C
|
|
25 RES43 = W43B(12)*FCENTR
|
|
NEVAL = 43
|
|
DO 30 K=1,10
|
|
RES43 = RES43+SAVFUN(K)*W43A(K)
|
|
30 CONTINUE
|
|
DO 40 K=1,11
|
|
IPX = IPX+1
|
|
ABSC = HLGTH*X3(K)
|
|
FVAL = F(ABSC+CENTR)+F(CENTR-ABSC)
|
|
RES43 = RES43+FVAL*W43B(K)
|
|
SAVFUN(IPX) = FVAL
|
|
40 CONTINUE
|
|
C
|
|
C TEST FOR CONVERGENCE.
|
|
C
|
|
RESULT = RES43*HLGTH
|
|
ABSERR = ABS((RES43-RES21)*HLGTH)
|
|
GO TO 65
|
|
C
|
|
C COMPUTE THE INTEGRAL USING THE 87-POINT FORMULA.
|
|
C
|
|
45 RES87 = W87B(23)*FCENTR
|
|
NEVAL = 87
|
|
DO 50 K=1,21
|
|
RES87 = RES87+SAVFUN(K)*W87A(K)
|
|
50 CONTINUE
|
|
DO 60 K=1,22
|
|
ABSC = HLGTH*X4(K)
|
|
RES87 = RES87+W87B(K)*(F(ABSC+CENTR)+F(CENTR-ABSC))
|
|
60 CONTINUE
|
|
RESULT = RES87*HLGTH
|
|
ABSERR = ABS((RES87-RES43)*HLGTH)
|
|
65 IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
|
|
1 ABSERR = RESASC*MIN(0.1E+01,
|
|
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
|
|
IF (RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
|
|
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
|
|
IF (ABSERR.LE.MAX(EPSABS,EPSREL*ABS(RESULT))) IER = 0
|
|
C ***JUMP OUT OF DO-LOOP
|
|
IF (IER.EQ.0) GO TO 999
|
|
70 CONTINUE
|
|
80 CALL XERMSG ('SLATEC', 'QNG', 'ABNORMAL RETURN', IER, 0)
|
|
999 RETURN
|
|
END
|