OpenLibm/slatec/sheqr.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

178 lines
5.9 KiB
Fortran

*DECK SHEQR
SUBROUTINE SHEQR (A, LDA, N, Q, INFO, IJOB)
C***BEGIN PROLOGUE SHEQR
C***SUBSIDIARY
C***PURPOSE Internal routine for SGMRES.
C***LIBRARY SLATEC (SLAP)
C***CATEGORY D2A4, D2B4
C***TYPE SINGLE PRECISION (SHEQR-S, DHEQR-D)
C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
C Seager, Mark K., (LLNL), seager@llnl.gov
C Lawrence Livermore National Laboratory
C PO Box 808, L-60
C Livermore, CA 94550 (510) 423-3141
C***DESCRIPTION
C This routine performs a QR decomposition of an upper
C Hessenberg matrix A using Givens rotations. There are two
C options available: 1) Performing a fresh decomposition 2)
C updating the QR factors by adding a row and a column to the
C matrix A.
C
C *Usage:
C INTEGER LDA, N, INFO, IJOB
C REAL A(LDA,N), Q(2*N)
C
C CALL SHEQR(A, LDA, N, Q, INFO, IJOB)
C
C *Arguments:
C A :INOUT Real A(LDA,N)
C On input, the matrix to be decomposed.
C On output, the upper triangular matrix R.
C The factorization can be written Q*A = R, where
C Q is a product of Givens rotations and R is upper
C triangular.
C LDA :IN Integer
C The leading dimension of the array A.
C N :IN Integer
C A is an (N+1) by N Hessenberg matrix.
C Q :OUT Real Q(2*N)
C The factors c and s of each Givens rotation used
C in decomposing A.
C INFO :OUT Integer
C = 0 normal value.
C = K if A(K,K) .eq. 0.0 . This is not an error
C condition for this subroutine, but it does
C indicate that SHELS will divide by zero
C if called.
C IJOB :IN Integer
C = 1 means that a fresh decomposition of the
C matrix A is desired.
C .ge. 2 means that the current decomposition of A
C will be updated by the addition of a row
C and a column.
C
C***SEE ALSO SGMRES
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 871001 DATE WRITTEN
C 881213 Previous REVISION DATE
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
C 890922 Numerous changes to prologue to make closer to SLATEC
C standard. (FNF)
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
C 910411 Prologue converted to Version 4.0 format. (BAB)
C 910506 Made subsidiary to SGMRES. (FNF)
C 920511 Added complete declaration section. (WRB)
C***END PROLOGUE SHEQR
C The following is for optimized compilation on LLNL/LTSS Crays.
CLLL. OPTIMIZE
C .. Scalar Arguments ..
INTEGER IJOB, INFO, LDA, N
C .. Array Arguments ..
REAL A(LDA,*), Q(*)
C .. Local Scalars ..
REAL C, S, T, T1, T2
INTEGER I, IQ, J, K, KM1, KP1, NM1
C .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
C***FIRST EXECUTABLE STATEMENT SHEQR
IF (IJOB .GT. 1) GO TO 70
C -------------------------------------------------------------------
C A new factorization is desired.
C -------------------------------------------------------------------
C QR decomposition without pivoting.
C
INFO = 0
DO 60 K = 1, N
KM1 = K - 1
KP1 = K + 1
C
C Compute K-th column of R.
C First, multiply the K-th column of A by the previous
C K-1 Givens rotations.
C
IF (KM1 .LT. 1) GO TO 20
DO 10 J = 1, KM1
I = 2*(J-1) + 1
T1 = A(J,K)
T2 = A(J+1,K)
C = Q(I)
S = Q(I+1)
A(J,K) = C*T1 - S*T2
A(J+1,K) = S*T1 + C*T2
10 CONTINUE
C
C Compute Givens components C and S.
C
20 CONTINUE
IQ = 2*KM1 + 1
T1 = A(K,K)
T2 = A(KP1,K)
IF( T2.EQ.0.0E0 ) THEN
C = 1
S = 0
ELSEIF( ABS(T2).GE.ABS(T1) ) THEN
T = T1/T2
S = -1.0E0/SQRT(1.0E0+T*T)
C = -S*T
ELSE
T = T2/T1
C = 1.0E0/SQRT(1.0E0+T*T)
S = -C*T
ENDIF
Q(IQ) = C
Q(IQ+1) = S
A(K,K) = C*T1 - S*T2
IF( A(K,K).EQ.0.0E0 ) INFO = K
60 CONTINUE
RETURN
C -------------------------------------------------------------------
C The old factorization of a will be updated. A row and a
C column has been added to the matrix A. N by N-1 is now
C the old size of the matrix.
C -------------------------------------------------------------------
70 CONTINUE
NM1 = N - 1
C -------------------------------------------------------------------
C Multiply the new column by the N previous Givens rotations.
C -------------------------------------------------------------------
DO 100 K = 1,NM1
I = 2*(K-1) + 1
T1 = A(K,N)
T2 = A(K+1,N)
C = Q(I)
S = Q(I+1)
A(K,N) = C*T1 - S*T2
A(K+1,N) = S*T1 + C*T2
100 CONTINUE
C -------------------------------------------------------------------
C Complete update of decomposition by forming last Givens
C rotation, and multiplying it times the column
C vector(A(N,N),A(NP1,N)).
C -------------------------------------------------------------------
INFO = 0
T1 = A(N,N)
T2 = A(N+1,N)
IF ( T2.EQ.0.0E0 ) THEN
C = 1
S = 0
ELSEIF( ABS(T2).GE.ABS(T1) ) THEN
T = T1/T2
S = -1.0E0/SQRT(1.0E0+T*T)
C = -S*T
ELSE
T = T2/T1
C = 1.0E0/SQRT(1.0E0+T*T)
S = -C*T
ENDIF
IQ = 2*N - 1
Q(IQ) = C
Q(IQ+1) = S
A(N,N) = C*T1 - S*T2
IF (A(N,N) .EQ. 0.0E0) INFO = N
RETURN
C------------- LAST LINE OF SHEQR FOLLOWS ----------------------------
END