OpenLibm/slatec/snbsl.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

149 lines
4.2 KiB
Fortran

*DECK SNBSL
SUBROUTINE SNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
C***BEGIN PROLOGUE SNBSL
C***PURPOSE Solve a real band system using the factors computed by
C SNBCO or SNBFA.
C***LIBRARY SLATEC
C***CATEGORY D2A2
C***TYPE SINGLE PRECISION (SNBSL-S, DNBSL-D, CNBSL-C)
C***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
C***AUTHOR Voorhees, E. A., (LANL)
C***DESCRIPTION
C
C SNBSL solves the real band system
C A * X = B or TRANS(A) * X = B
C using the factors computed by SNBCO or SNBFA.
C
C On Entry
C
C ABE REAL(LDA, NC)
C the output from SNBCO or SNBFA.
C NC must be .GE. 2*ML+MU+1 .
C
C LDA INTEGER
C the leading dimension of the array ABE .
C
C N INTEGER
C the order of the original matrix.
C
C ML INTEGER
C number of diagonals below the main diagonal.
C
C MU INTEGER
C number of diagonals above the main diagonal.
C
C IPVT INTEGER(N)
C the pivot vector from SNBCO or SNBFA.
C
C B REAL(N)
C the right hand side vector.
C
C JOB INTEGER
C = 0 to solve A*X = B .
C = nonzero to solve TRANS(A)*X = B , where
C TRANS(A) is the transpose.
C
C On Return
C
C B the solution vector X .
C
C Error Condition
C
C A division by zero will occur if the input factor contains a
C zero on the diagonal. Technically, this indicates singularity,
C but it is often caused by improper arguments or improper
C setting of LDA. It will not occur if the subroutines are
C called correctly and if SNBCO has set RCOND .GT. 0.0
C or SNBFA has set INFO .EQ. 0 .
C
C To compute INVERSE(A) * C where C is a matrix
C with P columns
C CALL SNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
C IF (RCOND is too small) GO TO ...
C DO 10 J = 1, P
C CALL SNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
C 10 CONTINUE
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED SAXPY, SDOT
C***REVISION HISTORY (YYMMDD)
C 800717 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SNBSL
INTEGER LDA,N,ML,MU,IPVT(*),JOB
REAL ABE(LDA,*),B(*)
C
REAL SDOT,T
INTEGER K,KB,L,LB,LDB,LM,M,MLM,NM1
C***FIRST EXECUTABLE STATEMENT SNBSL
M=MU+ML+1
NM1=N-1
LDB=1-LDA
IF(JOB.NE.0)GO TO 50
C
C JOB = 0 , SOLVE A * X = B
C FIRST SOLVE L*Y = B
C
IF(ML.EQ.0)GO TO 30
IF(NM1.LT.1)GO TO 30
DO 20 K=1,NM1
LM=MIN(ML,N-K)
L=IPVT(K)
T=B(L)
IF(L.EQ.K)GO TO 10
B(L)=B(K)
B(K)=T
10 CONTINUE
MLM=ML-(LM-1)
CALL SAXPY(LM,T,ABE(K+LM,MLM),LDB,B(K+1),1)
20 CONTINUE
30 CONTINUE
C
C NOW SOLVE U*X = Y
C
DO 40 KB=1,N
K=N+1-KB
B(K)=B(K)/ABE(K,ML+1)
LM=MIN(K,M)-1
LB=K-LM
T=-B(K)
CALL SAXPY(LM,T,ABE(K-1,ML+2),LDB,B(LB),1)
40 CONTINUE
GO TO 100
50 CONTINUE
C
C JOB = NONZERO, SOLVE TRANS(A) * X = B
C FIRST SOLVE TRANS(U)*Y = B
C
DO 60 K = 1, N
LM = MIN(K,M) - 1
LB = K - LM
T = SDOT(LM,ABE(K-1,ML+2),LDB,B(LB),1)
B(K) = (B(K) - T)/ABE(K,ML+1)
60 CONTINUE
C
C NOW SOLVE TRANS(L)*X = Y
C
IF (ML .EQ. 0) GO TO 90
IF (NM1 .LT. 1) GO TO 90
DO 80 KB = 1, NM1
K = N - KB
LM = MIN(ML,N-K)
MLM = ML - (LM - 1)
B(K) = B(K) + SDOT(LM,ABE(K+LM,MLM),LDB,B(K+1),1)
L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
RETURN
END