mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
161 lines
5.1 KiB
Fortran
161 lines
5.1 KiB
Fortran
*DECK SNRM2
|
|
REAL FUNCTION SNRM2 (N, SX, INCX)
|
|
C***BEGIN PROLOGUE SNRM2
|
|
C***PURPOSE Compute the Euclidean length (L2 norm) of a vector.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1A3B
|
|
C***TYPE SINGLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C)
|
|
C***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2,
|
|
C LINEAR ALGEBRA, UNITARY, VECTOR
|
|
C***AUTHOR Lawson, C. L., (JPL)
|
|
C Hanson, R. J., (SNLA)
|
|
C Kincaid, D. R., (U. of Texas)
|
|
C Krogh, F. T., (JPL)
|
|
C***DESCRIPTION
|
|
C
|
|
C B L A S Subprogram
|
|
C Description of Parameters
|
|
C
|
|
C --Input--
|
|
C N number of elements in input vector(s)
|
|
C SX single precision vector with N elements
|
|
C INCX storage spacing between elements of SX
|
|
C
|
|
C --Output--
|
|
C SNRM2 single precision result (zero if N .LE. 0)
|
|
C
|
|
C Euclidean norm of the N-vector stored in SX with storage
|
|
C increment INCX .
|
|
C If N .LE. 0, return with result = 0.
|
|
C If N .GE. 1, then INCX must be .GE. 1
|
|
C
|
|
C Four Phase Method using two built-in constants that are
|
|
C hopefully applicable to all machines.
|
|
C CUTLO = maximum of SQRT(U/EPS) over all known machines.
|
|
C CUTHI = minimum of SQRT(V) over all known machines.
|
|
C where
|
|
C EPS = smallest no. such that EPS + 1. .GT. 1.
|
|
C U = smallest positive no. (underflow limit)
|
|
C V = largest no. (overflow limit)
|
|
C
|
|
C Brief Outline of Algorithm.
|
|
C
|
|
C Phase 1 scans zero components.
|
|
C Move to phase 2 when a component is nonzero and .LE. CUTLO
|
|
C Move to phase 3 when a component is .GT. CUTLO
|
|
C Move to phase 4 when a component is .GE. CUTHI/M
|
|
C where M = N for X() real and M = 2*N for complex.
|
|
C
|
|
C Values for CUTLO and CUTHI.
|
|
C From the environmental parameters listed in the IMSL converter
|
|
C document the limiting values are as follows:
|
|
C CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are
|
|
C Univac and DEC at 2**(-103)
|
|
C Thus CUTLO = 2**(-51) = 4.44089E-16
|
|
C CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC.
|
|
C Thus CUTHI = 2**(63.5) = 1.30438E19
|
|
C CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC.
|
|
C Thus CUTLO = 2**(-33.5) = 8.23181D-11
|
|
C CUTHI, D.P. same as S.P. CUTHI = 1.30438D19
|
|
C DATA CUTLO, CUTHI /8.232D-11, 1.304D19/
|
|
C DATA CUTLO, CUTHI /4.441E-16, 1.304E19/
|
|
C
|
|
C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
|
|
C Krogh, Basic linear algebra subprograms for Fortran
|
|
C usage, Algorithm No. 539, Transactions on Mathematical
|
|
C Software 5, 3 (September 1979), pp. 308-323.
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 791001 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE SNRM2
|
|
INTEGER NEXT
|
|
REAL SX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE
|
|
SAVE CUTLO, CUTHI, ZERO, ONE
|
|
DATA ZERO, ONE /0.0E0, 1.0E0/
|
|
C
|
|
DATA CUTLO, CUTHI /4.441E-16, 1.304E19/
|
|
C***FIRST EXECUTABLE STATEMENT SNRM2
|
|
IF (N .GT. 0) GO TO 10
|
|
SNRM2 = ZERO
|
|
GO TO 300
|
|
C
|
|
10 ASSIGN 30 TO NEXT
|
|
SUM = ZERO
|
|
NN = N * INCX
|
|
C
|
|
C BEGIN MAIN LOOP
|
|
C
|
|
I = 1
|
|
20 GO TO NEXT,(30, 50, 70, 110)
|
|
30 IF (ABS(SX(I)) .GT. CUTLO) GO TO 85
|
|
ASSIGN 50 TO NEXT
|
|
XMAX = ZERO
|
|
C
|
|
C PHASE 1. SUM IS ZERO
|
|
C
|
|
50 IF (SX(I) .EQ. ZERO) GO TO 200
|
|
IF (ABS(SX(I)) .GT. CUTLO) GO TO 85
|
|
C
|
|
C PREPARE FOR PHASE 2.
|
|
C
|
|
ASSIGN 70 TO NEXT
|
|
GO TO 105
|
|
C
|
|
C PREPARE FOR PHASE 4.
|
|
C
|
|
100 I = J
|
|
ASSIGN 110 TO NEXT
|
|
SUM = (SUM / SX(I)) / SX(I)
|
|
105 XMAX = ABS(SX(I))
|
|
GO TO 115
|
|
C
|
|
C PHASE 2. SUM IS SMALL.
|
|
C SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
|
|
C
|
|
70 IF (ABS(SX(I)) .GT. CUTLO) GO TO 75
|
|
C
|
|
C COMMON CODE FOR PHASES 2 AND 4.
|
|
C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.
|
|
C
|
|
110 IF (ABS(SX(I)) .LE. XMAX) GO TO 115
|
|
SUM = ONE + SUM * (XMAX / SX(I))**2
|
|
XMAX = ABS(SX(I))
|
|
GO TO 200
|
|
C
|
|
115 SUM = SUM + (SX(I)/XMAX)**2
|
|
GO TO 200
|
|
C
|
|
C PREPARE FOR PHASE 3.
|
|
C
|
|
75 SUM = (SUM * XMAX) * XMAX
|
|
C
|
|
C FOR REAL OR D.P. SET HITEST = CUTHI/N
|
|
C FOR COMPLEX SET HITEST = CUTHI/(2*N)
|
|
C
|
|
85 HITEST = CUTHI / N
|
|
C
|
|
C PHASE 3. SUM IS MID-RANGE. NO SCALING.
|
|
C
|
|
DO 95 J = I,NN,INCX
|
|
IF (ABS(SX(J)) .GE. HITEST) GO TO 100
|
|
95 SUM = SUM + SX(J)**2
|
|
SNRM2 = SQRT( SUM )
|
|
GO TO 300
|
|
C
|
|
200 CONTINUE
|
|
I = I + INCX
|
|
IF (I .LE. NN) GO TO 20
|
|
C
|
|
C END OF MAIN LOOP.
|
|
C
|
|
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
|
|
C
|
|
SNRM2 = XMAX * SQRT(SUM)
|
|
300 CONTINUE
|
|
RETURN
|
|
END
|