mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
300 lines
10 KiB
Fortran
300 lines
10 KiB
Fortran
*DECK SSYMM
|
|
SUBROUTINE SSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA,
|
|
$ C, LDC)
|
|
C***BEGIN PROLOGUE SSYMM
|
|
C***PURPOSE Multiply a real general matrix by a real symmetric matrix.
|
|
C***LIBRARY SLATEC (BLAS)
|
|
C***CATEGORY D1B6
|
|
C***TYPE SINGLE PRECISION (SSYMM-S, DSYMM-D, CSYMM-C)
|
|
C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
|
|
C***AUTHOR Dongarra, J., (ANL)
|
|
C Duff, I., (AERE)
|
|
C Du Croz, J., (NAG)
|
|
C Hammarling, S. (NAG)
|
|
C***DESCRIPTION
|
|
C
|
|
C SSYMM performs one of the matrix-matrix operations
|
|
C
|
|
C C := alpha*A*B + beta*C,
|
|
C
|
|
C or
|
|
C
|
|
C C := alpha*B*A + beta*C,
|
|
C
|
|
C where alpha and beta are scalars, A is a symmetric matrix and B and
|
|
C C are m by n matrices.
|
|
C
|
|
C Parameters
|
|
C ==========
|
|
C
|
|
C SIDE - CHARACTER*1.
|
|
C On entry, SIDE specifies whether the symmetric matrix A
|
|
C appears on the left or right in the operation as follows:
|
|
C
|
|
C SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
|
|
C
|
|
C SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C UPLO - CHARACTER*1.
|
|
C On entry, UPLO specifies whether the upper or lower
|
|
C triangular part of the symmetric matrix A is to be
|
|
C referenced as follows:
|
|
C
|
|
C UPLO = 'U' or 'u' Only the upper triangular part of the
|
|
C symmetric matrix is to be referenced.
|
|
C
|
|
C UPLO = 'L' or 'l' Only the lower triangular part of the
|
|
C symmetric matrix is to be referenced.
|
|
C
|
|
C Unchanged on exit.
|
|
C
|
|
C M - INTEGER.
|
|
C On entry, M specifies the number of rows of the matrix C.
|
|
C M must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C N - INTEGER.
|
|
C On entry, N specifies the number of columns of the matrix C.
|
|
C N must be at least zero.
|
|
C Unchanged on exit.
|
|
C
|
|
C ALPHA - REAL .
|
|
C On entry, ALPHA specifies the scalar alpha.
|
|
C Unchanged on exit.
|
|
C
|
|
C A - REAL array of DIMENSION ( LDA, ka ), where ka is
|
|
C m when SIDE = 'L' or 'l' and is n otherwise.
|
|
C Before entry with SIDE = 'L' or 'l', the m by m part of
|
|
C the array A must contain the symmetric matrix, such that
|
|
C when UPLO = 'U' or 'u', the leading m by m upper triangular
|
|
C part of the array A must contain the upper triangular part
|
|
C of the symmetric matrix and the strictly lower triangular
|
|
C part of A is not referenced, and when UPLO = 'L' or 'l',
|
|
C the leading m by m lower triangular part of the array A
|
|
C must contain the lower triangular part of the symmetric
|
|
C matrix and the strictly upper triangular part of A is not
|
|
C referenced.
|
|
C Before entry with SIDE = 'R' or 'r', the n by n part of
|
|
C the array A must contain the symmetric matrix, such that
|
|
C when UPLO = 'U' or 'u', the leading n by n upper triangular
|
|
C part of the array A must contain the upper triangular part
|
|
C of the symmetric matrix and the strictly lower triangular
|
|
C part of A is not referenced, and when UPLO = 'L' or 'l',
|
|
C the leading n by n lower triangular part of the array A
|
|
C must contain the lower triangular part of the symmetric
|
|
C matrix and the strictly upper triangular part of A is not
|
|
C referenced.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDA - INTEGER.
|
|
C On entry, LDA specifies the first dimension of A as declared
|
|
C in the calling (sub) program. When SIDE = 'L' or 'l' then
|
|
C LDA must be at least max( 1, m ), otherwise LDA must be at
|
|
C least max( 1, n ).
|
|
C Unchanged on exit.
|
|
C
|
|
C B - REAL array of DIMENSION ( LDB, n ).
|
|
C Before entry, the leading m by n part of the array B must
|
|
C contain the matrix B.
|
|
C Unchanged on exit.
|
|
C
|
|
C LDB - INTEGER.
|
|
C On entry, LDB specifies the first dimension of B as declared
|
|
C in the calling (sub) program. LDB must be at least
|
|
C max( 1, m ).
|
|
C Unchanged on exit.
|
|
C
|
|
C BETA - REAL .
|
|
C On entry, BETA specifies the scalar beta. When BETA is
|
|
C supplied as zero then C need not be set on input.
|
|
C Unchanged on exit.
|
|
C
|
|
C C - REAL array of DIMENSION ( LDC, n ).
|
|
C Before entry, the leading m by n part of the array C must
|
|
C contain the matrix C, except when beta is zero, in which
|
|
C case C need not be set on entry.
|
|
C On exit, the array C is overwritten by the m by n updated
|
|
C matrix.
|
|
C
|
|
C LDC - INTEGER.
|
|
C On entry, LDC specifies the first dimension of C as declared
|
|
C in the calling (sub) program. LDC must be at least
|
|
C max( 1, m ).
|
|
C Unchanged on exit.
|
|
C
|
|
C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
|
|
C A set of level 3 basic linear algebra subprograms.
|
|
C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
|
|
C***ROUTINES CALLED LSAME, XERBLA
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 890208 DATE WRITTEN
|
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
|
C lines were modified. (BKS)
|
|
C***END PROLOGUE SSYMM
|
|
C .. Scalar Arguments ..
|
|
CHARACTER*1 SIDE, UPLO
|
|
INTEGER M, N, LDA, LDB, LDC
|
|
REAL ALPHA, BETA
|
|
C .. Array Arguments ..
|
|
REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
|
|
C .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
C .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
C .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
C .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER I, INFO, J, K, NROWA
|
|
REAL TEMP1, TEMP2
|
|
C .. Parameters ..
|
|
REAL ONE , ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
C***FIRST EXECUTABLE STATEMENT SSYMM
|
|
C
|
|
C Set NROWA as the number of rows of A.
|
|
C
|
|
IF( LSAME( SIDE, 'L' ) )THEN
|
|
NROWA = M
|
|
ELSE
|
|
NROWA = N
|
|
END IF
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
C
|
|
C Test the input parameters.
|
|
C
|
|
INFO = 0
|
|
IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
|
|
$ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
|
|
INFO = 1
|
|
ELSE IF( ( .NOT.UPPER ).AND.
|
|
$ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
|
|
INFO = 2
|
|
ELSE IF( M .LT.0 )THEN
|
|
INFO = 3
|
|
ELSE IF( N .LT.0 )THEN
|
|
INFO = 4
|
|
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
|
|
INFO = 7
|
|
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
|
|
INFO = 9
|
|
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
|
|
INFO = 12
|
|
END IF
|
|
IF( INFO.NE.0 )THEN
|
|
CALL XERBLA( 'SSYMM ', INFO )
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Quick return if possible.
|
|
C
|
|
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
|
|
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
|
$ RETURN
|
|
C
|
|
C And when alpha.eq.zero.
|
|
C
|
|
IF( ALPHA.EQ.ZERO )THEN
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 20, J = 1, N
|
|
DO 10, I = 1, M
|
|
C( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40, J = 1, N
|
|
DO 30, I = 1, M
|
|
C( I, J ) = BETA*C( I, J )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
C
|
|
C Start the operations.
|
|
C
|
|
IF( LSAME( SIDE, 'L' ) )THEN
|
|
C
|
|
C Form C := alpha*A*B + beta*C.
|
|
C
|
|
IF( UPPER )THEN
|
|
DO 70, J = 1, N
|
|
DO 60, I = 1, M
|
|
TEMP1 = ALPHA*B( I, J )
|
|
TEMP2 = ZERO
|
|
DO 50, K = 1, I - 1
|
|
C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
|
|
TEMP2 = TEMP2 + B( K, J )*A( K, I )
|
|
50 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
|
|
ELSE
|
|
C( I, J ) = BETA *C( I, J ) +
|
|
$ TEMP1*A( I, I ) + ALPHA*TEMP2
|
|
END IF
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
ELSE
|
|
DO 100, J = 1, N
|
|
DO 90, I = M, 1, -1
|
|
TEMP1 = ALPHA*B( I, J )
|
|
TEMP2 = ZERO
|
|
DO 80, K = I + 1, M
|
|
C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
|
|
TEMP2 = TEMP2 + B( K, J )*A( K, I )
|
|
80 CONTINUE
|
|
IF( BETA.EQ.ZERO )THEN
|
|
C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
|
|
ELSE
|
|
C( I, J ) = BETA *C( I, J ) +
|
|
$ TEMP1*A( I, I ) + ALPHA*TEMP2
|
|
END IF
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
END IF
|
|
ELSE
|
|
C
|
|
C Form C := alpha*B*A + beta*C.
|
|
C
|
|
DO 170, J = 1, N
|
|
TEMP1 = ALPHA*A( J, J )
|
|
IF( BETA.EQ.ZERO )THEN
|
|
DO 110, I = 1, M
|
|
C( I, J ) = TEMP1*B( I, J )
|
|
110 CONTINUE
|
|
ELSE
|
|
DO 120, I = 1, M
|
|
C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
|
|
120 CONTINUE
|
|
END IF
|
|
DO 140, K = 1, J - 1
|
|
IF( UPPER )THEN
|
|
TEMP1 = ALPHA*A( K, J )
|
|
ELSE
|
|
TEMP1 = ALPHA*A( J, K )
|
|
END IF
|
|
DO 130, I = 1, M
|
|
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
DO 160, K = J + 1, N
|
|
IF( UPPER )THEN
|
|
TEMP1 = ALPHA*A( J, K )
|
|
ELSE
|
|
TEMP1 = ALPHA*A( K, J )
|
|
END IF
|
|
DO 150, I = 1, M
|
|
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
170 CONTINUE
|
|
END IF
|
|
C
|
|
RETURN
|
|
C
|
|
C End of SSYMM .
|
|
C
|
|
END
|