mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
381 lines
11 KiB
Fortran
381 lines
11 KiB
Fortran
*DECK SVD
|
|
SUBROUTINE SVD (NM, M, N, A, W, MATU, U, MATV, V, IERR, RV1)
|
|
C***BEGIN PROLOGUE SVD
|
|
C***SUBSIDIARY
|
|
C***PURPOSE Perform the singular value decomposition of a rectangular
|
|
C matrix.
|
|
C***LIBRARY SLATEC
|
|
C***TYPE SINGLE PRECISION (SVD-S)
|
|
C***AUTHOR (UNKNOWN)
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of the ALGOL procedure SVD,
|
|
C NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
|
|
C HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).
|
|
C
|
|
C This subroutine determines the singular value decomposition
|
|
C T
|
|
C A=USV of a REAL M by N rectangular matrix. Householder
|
|
C bidiagonalization and a variant of the QR algorithm are used.
|
|
C
|
|
C On Input
|
|
C
|
|
C NM must be set to the row dimension of the two-dimensional
|
|
C array parameters, A, U and V, as declared in the calling
|
|
C program dimension statement. NM is an INTEGER variable.
|
|
C Note that NM must be at least as large as the maximum
|
|
C of M and N.
|
|
C
|
|
C M is the number of rows of A and U.
|
|
C
|
|
C N is the number of columns of A and U and the order of V.
|
|
C
|
|
C A contains the rectangular input matrix to be decomposed. A is
|
|
C a two-dimensional REAL array, dimensioned A(NM,N).
|
|
C
|
|
C MATU should be set to .TRUE. if the U matrix in the
|
|
C decomposition is desired, and to .FALSE. otherwise.
|
|
C MATU is a LOGICAL variable.
|
|
C
|
|
C MATV should be set to .TRUE. if the V matrix in the
|
|
C decomposition is desired, and to .FALSE. otherwise.
|
|
C MATV is a LOGICAL variable.
|
|
C
|
|
C On Output
|
|
C
|
|
C A is unaltered (unless overwritten by U or V).
|
|
C
|
|
C W contains the N (non-negative) singular values of A (the
|
|
C diagonal elements of S). They are unordered. If an
|
|
C error exit is made, the singular values should be correct
|
|
C for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
|
|
C REAL array, dimensioned W(N).
|
|
C
|
|
C U contains the matrix U (orthogonal column vectors) of the
|
|
C decomposition if MATU has been set to .TRUE. Otherwise,
|
|
C U is used as a temporary array. U may coincide with A.
|
|
C If an error exit is made, the columns of U corresponding
|
|
C to indices of correct singular values should be correct.
|
|
C U is a two-dimensional REAL array, dimensioned U(NM,N).
|
|
C
|
|
C V contains the matrix V (orthogonal) of the decomposition if
|
|
C MATV has been set to .TRUE. Otherwise, V is not referenced.
|
|
C V may also coincide with A if U does not. If an error
|
|
C exit is made, the columns of V corresponding to indices of
|
|
C correct singular values should be correct. V is a two-
|
|
C dimensional REAL array, dimensioned V(NM,N).
|
|
C
|
|
C IERR is an INTEGER flag set to
|
|
C Zero for normal return,
|
|
C K if the K-th singular value has not been
|
|
C determined after 30 iterations.
|
|
C
|
|
C RV1 is a one-dimensional REAL array used for temporary storage,
|
|
C dimensioned RV1(N).
|
|
C
|
|
C CALLS PYTHAG(A,B) for sqrt(A**2 + B**2).
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***SEE ALSO EISDOC
|
|
C***ROUTINES CALLED PYTHAG
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 811101 DATE WRITTEN
|
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 900402 Added TYPE section. (WRB)
|
|
C***END PROLOGUE SVD
|
|
C
|
|
INTEGER I,J,K,L,M,N,II,I1,KK,K1,LL,L1,MN,NM,ITS,IERR
|
|
REAL A(NM,*),W(*),U(NM,*),V(NM,*),RV1(*)
|
|
REAL C,F,G,H,S,X,Y,Z,SCALE,S1
|
|
REAL PYTHAG
|
|
LOGICAL MATU,MATV
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT SVD
|
|
IERR = 0
|
|
C
|
|
DO 100 I = 1, M
|
|
C
|
|
DO 100 J = 1, N
|
|
U(I,J) = A(I,J)
|
|
100 CONTINUE
|
|
C .......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM ..........
|
|
G = 0.0E0
|
|
SCALE = 0.0E0
|
|
S1 = 0.0E0
|
|
C
|
|
DO 300 I = 1, N
|
|
L = I + 1
|
|
RV1(I) = SCALE * G
|
|
G = 0.0E0
|
|
S = 0.0E0
|
|
SCALE = 0.0E0
|
|
IF (I .GT. M) GO TO 210
|
|
C
|
|
DO 120 K = I, M
|
|
120 SCALE = SCALE + ABS(U(K,I))
|
|
C
|
|
IF (SCALE .EQ. 0.0E0) GO TO 210
|
|
C
|
|
DO 130 K = I, M
|
|
U(K,I) = U(K,I) / SCALE
|
|
S = S + U(K,I)**2
|
|
130 CONTINUE
|
|
C
|
|
F = U(I,I)
|
|
G = -SIGN(SQRT(S),F)
|
|
H = F * G - S
|
|
U(I,I) = F - G
|
|
IF (I .EQ. N) GO TO 190
|
|
C
|
|
DO 150 J = L, N
|
|
S = 0.0E0
|
|
C
|
|
DO 140 K = I, M
|
|
140 S = S + U(K,I) * U(K,J)
|
|
C
|
|
F = S / H
|
|
C
|
|
DO 150 K = I, M
|
|
U(K,J) = U(K,J) + F * U(K,I)
|
|
150 CONTINUE
|
|
C
|
|
190 DO 200 K = I, M
|
|
200 U(K,I) = SCALE * U(K,I)
|
|
C
|
|
210 W(I) = SCALE * G
|
|
G = 0.0E0
|
|
S = 0.0E0
|
|
SCALE = 0.0E0
|
|
IF (I .GT. M .OR. I .EQ. N) GO TO 290
|
|
C
|
|
DO 220 K = L, N
|
|
220 SCALE = SCALE + ABS(U(I,K))
|
|
C
|
|
IF (SCALE .EQ. 0.0E0) GO TO 290
|
|
C
|
|
DO 230 K = L, N
|
|
U(I,K) = U(I,K) / SCALE
|
|
S = S + U(I,K)**2
|
|
230 CONTINUE
|
|
C
|
|
F = U(I,L)
|
|
G = -SIGN(SQRT(S),F)
|
|
H = F * G - S
|
|
U(I,L) = F - G
|
|
C
|
|
DO 240 K = L, N
|
|
240 RV1(K) = U(I,K) / H
|
|
C
|
|
IF (I .EQ. M) GO TO 270
|
|
C
|
|
DO 260 J = L, M
|
|
S = 0.0E0
|
|
C
|
|
DO 250 K = L, N
|
|
250 S = S + U(J,K) * U(I,K)
|
|
C
|
|
DO 260 K = L, N
|
|
U(J,K) = U(J,K) + S * RV1(K)
|
|
260 CONTINUE
|
|
C
|
|
270 DO 280 K = L, N
|
|
280 U(I,K) = SCALE * U(I,K)
|
|
C
|
|
290 S1 = MAX(S1,ABS(W(I))+ABS(RV1(I)))
|
|
300 CONTINUE
|
|
C .......... ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS ..........
|
|
IF (.NOT. MATV) GO TO 410
|
|
C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
|
|
DO 400 II = 1, N
|
|
I = N + 1 - II
|
|
IF (I .EQ. N) GO TO 390
|
|
IF (G .EQ. 0.0E0) GO TO 360
|
|
C
|
|
DO 320 J = L, N
|
|
C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
|
|
320 V(J,I) = (U(I,J) / U(I,L)) / G
|
|
C
|
|
DO 350 J = L, N
|
|
S = 0.0E0
|
|
C
|
|
DO 340 K = L, N
|
|
340 S = S + U(I,K) * V(K,J)
|
|
C
|
|
DO 350 K = L, N
|
|
V(K,J) = V(K,J) + S * V(K,I)
|
|
350 CONTINUE
|
|
C
|
|
360 DO 380 J = L, N
|
|
V(I,J) = 0.0E0
|
|
V(J,I) = 0.0E0
|
|
380 CONTINUE
|
|
C
|
|
390 V(I,I) = 1.0E0
|
|
G = RV1(I)
|
|
L = I
|
|
400 CONTINUE
|
|
C .......... ACCUMULATION OF LEFT-HAND TRANSFORMATIONS ..........
|
|
410 IF (.NOT. MATU) GO TO 510
|
|
C ..........FOR I=MIN(M,N) STEP -1 UNTIL 1 DO -- ..........
|
|
MN = N
|
|
IF (M .LT. N) MN = M
|
|
C
|
|
DO 500 II = 1, MN
|
|
I = MN + 1 - II
|
|
L = I + 1
|
|
G = W(I)
|
|
IF (I .EQ. N) GO TO 430
|
|
C
|
|
DO 420 J = L, N
|
|
420 U(I,J) = 0.0E0
|
|
C
|
|
430 IF (G .EQ. 0.0E0) GO TO 475
|
|
IF (I .EQ. MN) GO TO 460
|
|
C
|
|
DO 450 J = L, N
|
|
S = 0.0E0
|
|
C
|
|
DO 440 K = L, M
|
|
440 S = S + U(K,I) * U(K,J)
|
|
C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
|
|
F = (S / U(I,I)) / G
|
|
C
|
|
DO 450 K = I, M
|
|
U(K,J) = U(K,J) + F * U(K,I)
|
|
450 CONTINUE
|
|
C
|
|
460 DO 470 J = I, M
|
|
470 U(J,I) = U(J,I) / G
|
|
C
|
|
GO TO 490
|
|
C
|
|
475 DO 480 J = I, M
|
|
480 U(J,I) = 0.0E0
|
|
C
|
|
490 U(I,I) = U(I,I) + 1.0E0
|
|
500 CONTINUE
|
|
C .......... DIAGONALIZATION OF THE BIDIAGONAL FORM ..........
|
|
510 CONTINUE
|
|
C .......... FOR K=N STEP -1 UNTIL 1 DO -- ..........
|
|
DO 700 KK = 1, N
|
|
K1 = N - KK
|
|
K = K1 + 1
|
|
ITS = 0
|
|
C .......... TEST FOR SPLITTING.
|
|
C FOR L=K STEP -1 UNTIL 1 DO -- ..........
|
|
520 DO 530 LL = 1, K
|
|
L1 = K - LL
|
|
L = L1 + 1
|
|
IF (S1 + ABS(RV1(L)) .EQ. S1) GO TO 565
|
|
C .......... RV1(1) IS ALWAYS ZERO, SO THERE IS NO EXIT
|
|
C THROUGH THE BOTTOM OF THE LOOP ..........
|
|
IF (S1 + ABS(W(L1)) .EQ. S1) GO TO 540
|
|
530 CONTINUE
|
|
C .......... CANCELLATION OF RV1(L) IF L GREATER THAN 1 ..........
|
|
540 C = 0.0E0
|
|
S = 1.0E0
|
|
C
|
|
DO 560 I = L, K
|
|
F = S * RV1(I)
|
|
RV1(I) = C * RV1(I)
|
|
IF (S1 + ABS(F) .EQ. S1) GO TO 565
|
|
G = W(I)
|
|
H = PYTHAG(F,G)
|
|
W(I) = H
|
|
C = G / H
|
|
S = -F / H
|
|
IF (.NOT. MATU) GO TO 560
|
|
C
|
|
DO 550 J = 1, M
|
|
Y = U(J,L1)
|
|
Z = U(J,I)
|
|
U(J,L1) = Y * C + Z * S
|
|
U(J,I) = -Y * S + Z * C
|
|
550 CONTINUE
|
|
C
|
|
560 CONTINUE
|
|
C .......... TEST FOR CONVERGENCE ..........
|
|
565 Z = W(K)
|
|
IF (L .EQ. K) GO TO 650
|
|
C .......... SHIFT FROM BOTTOM 2 BY 2 MINOR ..........
|
|
IF (ITS .EQ. 30) GO TO 1000
|
|
ITS = ITS + 1
|
|
X = W(L)
|
|
Y = W(K1)
|
|
G = RV1(K1)
|
|
H = RV1(K)
|
|
F = 0.5E0 * (((G + Z) / H) * ((G - Z) / Y) + Y / H - H / Y)
|
|
G = PYTHAG(F,1.0E0)
|
|
F = X - (Z / X) * Z + (H / X) * (Y / (F + SIGN(G,F)) - H)
|
|
C .......... NEXT QR TRANSFORMATION ..........
|
|
C = 1.0E0
|
|
S = 1.0E0
|
|
C
|
|
DO 600 I1 = L, K1
|
|
I = I1 + 1
|
|
G = RV1(I)
|
|
Y = W(I)
|
|
H = S * G
|
|
G = C * G
|
|
Z = PYTHAG(F,H)
|
|
RV1(I1) = Z
|
|
C = F / Z
|
|
S = H / Z
|
|
F = X * C + G * S
|
|
G = -X * S + G * C
|
|
H = Y * S
|
|
Y = Y * C
|
|
IF (.NOT. MATV) GO TO 575
|
|
C
|
|
DO 570 J = 1, N
|
|
X = V(J,I1)
|
|
Z = V(J,I)
|
|
V(J,I1) = X * C + Z * S
|
|
V(J,I) = -X * S + Z * C
|
|
570 CONTINUE
|
|
C
|
|
575 Z = PYTHAG(F,H)
|
|
W(I1) = Z
|
|
C .......... ROTATION CAN BE ARBITRARY IF Z IS ZERO ..........
|
|
IF (Z .EQ. 0.0E0) GO TO 580
|
|
C = F / Z
|
|
S = H / Z
|
|
580 F = C * G + S * Y
|
|
X = -S * G + C * Y
|
|
IF (.NOT. MATU) GO TO 600
|
|
C
|
|
DO 590 J = 1, M
|
|
Y = U(J,I1)
|
|
Z = U(J,I)
|
|
U(J,I1) = Y * C + Z * S
|
|
U(J,I) = -Y * S + Z * C
|
|
590 CONTINUE
|
|
C
|
|
600 CONTINUE
|
|
C
|
|
RV1(L) = 0.0E0
|
|
RV1(K) = F
|
|
W(K) = X
|
|
GO TO 520
|
|
C .......... CONVERGENCE ..........
|
|
650 IF (Z .GE. 0.0E0) GO TO 700
|
|
C .......... W(K) IS MADE NON-NEGATIVE ..........
|
|
W(K) = -Z
|
|
IF (.NOT. MATV) GO TO 700
|
|
C
|
|
DO 690 J = 1, N
|
|
690 V(J,K) = -V(J,K)
|
|
C
|
|
700 CONTINUE
|
|
C
|
|
GO TO 1001
|
|
C .......... SET ERROR -- NO CONVERGENCE TO A
|
|
C SINGULAR VALUE AFTER 30 ITERATIONS ..........
|
|
1000 IERR = K
|
|
1001 RETURN
|
|
END
|