OpenLibm/slatec/sxlcal.f
Viral B. Shah c977aa998f Add Makefile.extras to build libopenlibm-extras.
Replace amos with slatec
2012-12-31 16:37:05 -05:00

183 lines
7.5 KiB
Fortran

*DECK SXLCAL
SUBROUTINE SXLCAL (N, LGMR, X, XL, ZL, HES, MAXLP1, Q, V, R0NRM,
+ WK, SZ, JSCAL, JPRE, MSOLVE, NMSL, RPAR, IPAR, NELT, IA, JA, A,
+ ISYM)
C***BEGIN PROLOGUE SXLCAL
C***SUBSIDIARY
C***PURPOSE Internal routine for SGMRES.
C***LIBRARY SLATEC (SLAP)
C***CATEGORY D2A4, D2B4
C***TYPE SINGLE PRECISION (SXLCAL-S, DXLCAL-D)
C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
C Seager, Mark K., (LLNL), seager@llnl.gov
C Lawrence Livermore National Laboratory
C PO Box 808, L-60
C Livermore, CA 94550 (510) 423-3141
C***DESCRIPTION
C This routine computes the solution XL, the current SGMRES
C iterate, given the V(I)'s and the QR factorization of the
C Hessenberg matrix HES. This routine is only called when
C ITOL=11.
C
C *Usage:
C INTEGER N, LGMR, MAXLP1, JSCAL, JPRE, NMSL, IPAR(USER DEFINED)
C INTEGER NELT, IA(NELT), JA(NELT), ISYM
C REAL X(N), XL(N), ZL(N), HES(MAXLP1,MAXL), Q(2*MAXL),
C $ V(N,MAXLP1), R0NRM, WK(N), SZ(N), RPAR(USER DEFINED),
C $ A(NELT)
C EXTERNAL MSOLVE
C
C CALL SXLCAL(N, LGMR, X, XL, ZL, HES, MAXLP1, Q, V, R0NRM,
C $ WK, SZ, JSCAL, JPRE, MSOLVE, NMSL, RPAR, IPAR,
C $ NELT, IA, JA, A, ISYM)
C
C *Arguments:
C N :IN Integer
C The order of the matrix A, and the lengths
C of the vectors SR, SZ, R0 and Z.
C LGMR :IN Integer
C The number of iterations performed and
C the current order of the upper Hessenberg
C matrix HES.
C X :IN Real X(N)
C The current approximate solution as of the last restart.
C XL :OUT Real XL(N)
C An array of length N used to hold the approximate
C solution X(L).
C Warning: XL and ZL are the same array in the calling routine.
C ZL :IN Real ZL(N)
C An array of length N used to hold the approximate
C solution Z(L).
C HES :IN Real HES(MAXLP1,MAXL)
C The upper triangular factor of the QR decomposition
C of the (LGMR+1) by LGMR upper Hessenberg matrix whose
C entries are the scaled inner-products of A*V(*,i) and V(*,k).
C MAXLP1 :IN Integer
C MAXLP1 = MAXL + 1, used for dynamic dimensioning of HES.
C MAXL is the maximum allowable order of the matrix HES.
C Q :IN Real Q(2*MAXL)
C A real array of length 2*MAXL containing the components
C of the Givens rotations used in the QR decomposition
C of HES. It is loaded in SHEQR.
C V :IN Real V(N,MAXLP1)
C The N by(LGMR+1) array containing the LGMR
C orthogonal vectors V(*,1) to V(*,LGMR).
C R0NRM :IN Real
C The scaled norm of the initial residual for the
C current call to SPIGMR.
C WK :IN Real WK(N)
C A real work array of length N.
C SZ :IN Real SZ(N)
C A vector of length N containing the non-zero
C elements of the diagonal scaling matrix for Z.
C JSCAL :IN Integer
C A flag indicating whether arrays SR and SZ are used.
C JSCAL=0 means SR and SZ are not used and the
C algorithm will perform as if all
C SR(i) = 1 and SZ(i) = 1.
C JSCAL=1 means only SZ is used, and the algorithm
C performs as if all SR(i) = 1.
C JSCAL=2 means only SR is used, and the algorithm
C performs as if all SZ(i) = 1.
C JSCAL=3 means both SR and SZ are used.
C JPRE :IN Integer
C The preconditioner type flag.
C MSOLVE :EXT External.
C Name of the routine which solves a linear system Mz = r for
C z given r with the preconditioning matrix M (M is supplied via
C RPAR and IPAR arrays. The name of the MSOLVE routine must
C be declared external in the calling program. The calling
C sequence to MSOLVE is:
C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RPAR, IPAR)
C Where N is the number of unknowns, R is the right-hand side
C vector and Z is the solution upon return. NELT, IA, JA, A and
C ISYM are defined as below. RPAR is a real array that can be
C used to pass necessary preconditioning information and/or
C workspace to MSOLVE. IPAR is an integer work array for the
C same purpose as RPAR.
C NMSL :IN Integer
C The number of calls to MSOLVE.
C RPAR :IN Real RPAR(USER DEFINED)
C Real workspace passed directly to the MSOLVE routine.
C IPAR :IN Integer IPAR(USER DEFINED)
C Integer workspace passed directly to the MSOLVE routine.
C NELT :IN Integer
C The length of arrays IA, JA and A.
C IA :IN Integer IA(NELT)
C An integer array of length NELT containing matrix data.
C It is passed directly to the MATVEC and MSOLVE routines.
C JA :IN Integer JA(NELT)
C An integer array of length NELT containing matrix data.
C It is passed directly to the MATVEC and MSOLVE routines.
C A :IN Real A(NELT)
C A real array of length NELT containing matrix data.
C It is passed directly to the MATVEC and MSOLVE routines.
C ISYM :IN Integer
C A flag to indicate symmetric matrix storage.
C If ISYM=0, all non-zero entries of the matrix are
C stored. If ISYM=1, the matrix is symmetric and
C only the upper or lower triangular part is stored.
C
C***SEE ALSO SGMRES
C***ROUTINES CALLED SAXPY, SCOPY, SHELS
C***REVISION HISTORY (YYMMDD)
C 871001 DATE WRITTEN
C 881213 Previous REVISION DATE
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
C 890922 Numerous changes to prologue to make closer to SLATEC
C standard. (FNF)
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
C 910411 Prologue converted to Version 4.0 format. (BAB)
C 910502 Removed MSOLVE from ROUTINES CALLED list. (FNF)
C 910506 Made subsidiary to SGMRES. (FNF)
C 920511 Added complete declaration section. (WRB)
C***END PROLOGUE SXLCAL
C The following is for optimized compilation on LLNL/LTSS Crays.
CLLL. OPTIMIZE
C .. Scalar Arguments ..
REAL R0NRM
INTEGER ISYM, JPRE, JSCAL, LGMR, MAXLP1, N, NELT, NMSL
C .. Array Arguments ..
REAL A(NELT), HES(MAXLP1,*), Q(*), RPAR(*), SZ(*), V(N,*), WK(N),
+ X(N), XL(N), ZL(N)
INTEGER IA(NELT), IPAR(*), JA(NELT)
C .. Subroutine Arguments ..
EXTERNAL MSOLVE
C .. Local Scalars ..
INTEGER I, K, LL, LLP1
C .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SHELS
C***FIRST EXECUTABLE STATEMENT SXLCAL
LL = LGMR
LLP1 = LL + 1
DO 10 K = 1,LLP1
WK(K) = 0
10 CONTINUE
WK(1) = R0NRM
CALL SHELS(HES, MAXLP1, LL, Q, WK)
DO 20 K = 1,N
ZL(K) = 0
20 CONTINUE
DO 30 I = 1,LL
CALL SAXPY(N, WK(I), V(1,I), 1, ZL, 1)
30 CONTINUE
IF ((JSCAL .EQ. 1) .OR.(JSCAL .EQ. 3)) THEN
DO 40 K = 1,N
ZL(K) = ZL(K)/SZ(K)
40 CONTINUE
ENDIF
IF (JPRE .GT. 0) THEN
CALL SCOPY(N, ZL, 1, WK, 1)
CALL MSOLVE(N, WK, ZL, NELT, IA, JA, A, ISYM, RPAR, IPAR)
NMSL = NMSL + 1
ENDIF
C calculate XL from X and ZL.
DO 50 K = 1,N
XL(K) = X(K) + ZL(K)
50 CONTINUE
RETURN
C------------- LAST LINE OF SXLCAL FOLLOWS ----------------------------
END