mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
166 lines
4.9 KiB
Fortran
166 lines
4.9 KiB
Fortran
*DECK TRED2
|
|
SUBROUTINE TRED2 (NM, N, A, D, E, Z)
|
|
C***BEGIN PROLOGUE TRED2
|
|
C***PURPOSE Reduce a real symmetric matrix to a symmetric tridiagonal
|
|
C matrix using and accumulating orthogonal transformations.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4C1B1
|
|
C***TYPE SINGLE PRECISION (TRED2-S)
|
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of the ALGOL procedure TRED2,
|
|
C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
|
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
|
|
C
|
|
C This subroutine reduces a REAL SYMMETRIC matrix to a
|
|
C symmetric tridiagonal matrix using and accumulating
|
|
C orthogonal similarity transformations.
|
|
C
|
|
C On Input
|
|
C
|
|
C NM must be set to the row dimension of the two-dimensional
|
|
C array parameters, A and Z, as declared in the calling
|
|
C program dimension statement. NM is an INTEGER variable.
|
|
C
|
|
C N is the order of the matrix A. N is an INTEGER variable.
|
|
C N must be less than or equal to NM.
|
|
C
|
|
C A contains the real symmetric input matrix. Only the lower
|
|
C triangle of the matrix need be supplied. A is a two-
|
|
C dimensional REAL array, dimensioned A(NM,N).
|
|
C
|
|
C On Output
|
|
C
|
|
C D contains the diagonal elements of the symmetric tridiagonal
|
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
|
C
|
|
C E contains the subdiagonal elements of the symmetric
|
|
C tridiagonal matrix in its last N-1 positions. E(1) is set
|
|
C to zero. E is a one-dimensional REAL array, dimensioned
|
|
C E(N).
|
|
C
|
|
C Z contains the orthogonal transformation matrix produced in
|
|
C the reduction. Z is a two-dimensional REAL array,
|
|
C dimensioned Z(NM,N).
|
|
C
|
|
C A and Z may coincide. If distinct, A is unaltered.
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE TRED2
|
|
C
|
|
INTEGER I,J,K,L,N,II,NM,JP1
|
|
REAL A(NM,*),D(*),E(*),Z(NM,*)
|
|
REAL F,G,H,HH,SCALE
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT TRED2
|
|
DO 100 I = 1, N
|
|
C
|
|
DO 100 J = 1, I
|
|
Z(I,J) = A(I,J)
|
|
100 CONTINUE
|
|
C
|
|
IF (N .EQ. 1) GO TO 320
|
|
C .......... FOR I=N STEP -1 UNTIL 2 DO -- ..........
|
|
DO 300 II = 2, N
|
|
I = N + 2 - II
|
|
L = I - 1
|
|
H = 0.0E0
|
|
SCALE = 0.0E0
|
|
IF (L .LT. 2) GO TO 130
|
|
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
|
|
DO 120 K = 1, L
|
|
120 SCALE = SCALE + ABS(Z(I,K))
|
|
C
|
|
IF (SCALE .NE. 0.0E0) GO TO 140
|
|
130 E(I) = Z(I,L)
|
|
GO TO 290
|
|
C
|
|
140 DO 150 K = 1, L
|
|
Z(I,K) = Z(I,K) / SCALE
|
|
H = H + Z(I,K) * Z(I,K)
|
|
150 CONTINUE
|
|
C
|
|
F = Z(I,L)
|
|
G = -SIGN(SQRT(H),F)
|
|
E(I) = SCALE * G
|
|
H = H - F * G
|
|
Z(I,L) = F - G
|
|
F = 0.0E0
|
|
C
|
|
DO 240 J = 1, L
|
|
Z(J,I) = Z(I,J) / H
|
|
G = 0.0E0
|
|
C .......... FORM ELEMENT OF A*U ..........
|
|
DO 180 K = 1, J
|
|
180 G = G + Z(J,K) * Z(I,K)
|
|
C
|
|
JP1 = J + 1
|
|
IF (L .LT. JP1) GO TO 220
|
|
C
|
|
DO 200 K = JP1, L
|
|
200 G = G + Z(K,J) * Z(I,K)
|
|
C .......... FORM ELEMENT OF P ..........
|
|
220 E(J) = G / H
|
|
F = F + E(J) * Z(I,J)
|
|
240 CONTINUE
|
|
C
|
|
HH = F / (H + H)
|
|
C .......... FORM REDUCED A ..........
|
|
DO 260 J = 1, L
|
|
F = Z(I,J)
|
|
G = E(J) - HH * F
|
|
E(J) = G
|
|
C
|
|
DO 260 K = 1, J
|
|
Z(J,K) = Z(J,K) - F * E(K) - G * Z(I,K)
|
|
260 CONTINUE
|
|
C
|
|
290 D(I) = H
|
|
300 CONTINUE
|
|
C
|
|
320 D(1) = 0.0E0
|
|
E(1) = 0.0E0
|
|
C .......... ACCUMULATION OF TRANSFORMATION MATRICES ..........
|
|
DO 500 I = 1, N
|
|
L = I - 1
|
|
IF (D(I) .EQ. 0.0E0) GO TO 380
|
|
C
|
|
DO 360 J = 1, L
|
|
G = 0.0E0
|
|
C
|
|
DO 340 K = 1, L
|
|
340 G = G + Z(I,K) * Z(K,J)
|
|
C
|
|
DO 360 K = 1, L
|
|
Z(K,J) = Z(K,J) - G * Z(K,I)
|
|
360 CONTINUE
|
|
C
|
|
380 D(I) = Z(I,I)
|
|
Z(I,I) = 1.0E0
|
|
IF (L .LT. 1) GO TO 500
|
|
C
|
|
DO 400 J = 1, L
|
|
Z(I,J) = 0.0E0
|
|
Z(J,I) = 0.0E0
|
|
400 CONTINUE
|
|
C
|
|
500 CONTINUE
|
|
C
|
|
RETURN
|
|
END
|