mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
140 lines
4.5 KiB
Fortran
140 lines
4.5 KiB
Fortran
*DECK TRED3
|
|
SUBROUTINE TRED3 (N, NV, A, D, E, E2)
|
|
C***BEGIN PROLOGUE TRED3
|
|
C***PURPOSE Reduce a real symmetric matrix stored in packed form to
|
|
C symmetric tridiagonal matrix using orthogonal
|
|
C transformations.
|
|
C***LIBRARY SLATEC (EISPACK)
|
|
C***CATEGORY D4C1B1
|
|
C***TYPE SINGLE PRECISION (TRED3-S)
|
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
|
C***AUTHOR Smith, B. T., et al.
|
|
C***DESCRIPTION
|
|
C
|
|
C This subroutine is a translation of the ALGOL procedure TRED3,
|
|
C NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
|
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
|
|
C
|
|
C This subroutine reduces a REAL SYMMETRIC matrix, stored as
|
|
C a one-dimensional array, to a symmetric tridiagonal matrix
|
|
C using orthogonal similarity transformations.
|
|
C
|
|
C On Input
|
|
C
|
|
C N is the order of the matrix A. N is an INTEGER variable.
|
|
C
|
|
C NV is an INTEGER variable set equal to the dimension of the
|
|
C array A as specified in the calling program. NV must not
|
|
C be less than N*(N+1)/2.
|
|
C
|
|
C A contains the lower triangle, stored row-wise, of the real
|
|
C symmetric packed matrix. A is a one-dimensional REAL
|
|
C array, dimensioned A(NV).
|
|
C
|
|
C On Output
|
|
C
|
|
C A contains information about the orthogonal transformations
|
|
C used in the reduction in its first N*(N+1)/2 positions.
|
|
C
|
|
C D contains the diagonal elements of the symmetric tridiagonal
|
|
C matrix. D is a one-dimensional REAL array, dimensioned D(N).
|
|
C
|
|
C E contains the subdiagonal elements of the symmetric
|
|
C tridiagonal matrix in its last N-1 positions. E(1) is set
|
|
C to zero. E is a one-dimensional REAL array, dimensioned
|
|
C E(N).
|
|
C
|
|
C E2 contains the squares of the corresponding elements of E.
|
|
C E2 may coincide with E if the squares are not needed.
|
|
C E2 is a one-dimensional REAL array, dimensioned E2(N).
|
|
C
|
|
C Questions and comments should be directed to B. S. Garbow,
|
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
|
C ------------------------------------------------------------------
|
|
C
|
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
|
C 1976.
|
|
C***ROUTINES CALLED (NONE)
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 760101 DATE WRITTEN
|
|
C 890831 Modified array declarations. (WRB)
|
|
C 890831 REVISION DATE from Version 3.2
|
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
|
C***END PROLOGUE TRED3
|
|
C
|
|
INTEGER I,J,K,L,N,II,IZ,JK,NV
|
|
REAL A(*),D(*),E(*),E2(*)
|
|
REAL F,G,H,HH,SCALE
|
|
C
|
|
C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
|
|
C***FIRST EXECUTABLE STATEMENT TRED3
|
|
DO 300 II = 1, N
|
|
I = N + 1 - II
|
|
L = I - 1
|
|
IZ = (I * L) / 2
|
|
H = 0.0E0
|
|
SCALE = 0.0E0
|
|
IF (L .LT. 1) GO TO 130
|
|
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
|
|
DO 120 K = 1, L
|
|
IZ = IZ + 1
|
|
D(K) = A(IZ)
|
|
SCALE = SCALE + ABS(D(K))
|
|
120 CONTINUE
|
|
C
|
|
IF (SCALE .NE. 0.0E0) GO TO 140
|
|
130 E(I) = 0.0E0
|
|
E2(I) = 0.0E0
|
|
GO TO 290
|
|
C
|
|
140 DO 150 K = 1, L
|
|
D(K) = D(K) / SCALE
|
|
H = H + D(K) * D(K)
|
|
150 CONTINUE
|
|
C
|
|
E2(I) = SCALE * SCALE * H
|
|
F = D(L)
|
|
G = -SIGN(SQRT(H),F)
|
|
E(I) = SCALE * G
|
|
H = H - F * G
|
|
D(L) = F - G
|
|
A(IZ) = SCALE * D(L)
|
|
IF (L .EQ. 1) GO TO 290
|
|
F = 0.0E0
|
|
C
|
|
DO 240 J = 1, L
|
|
G = 0.0E0
|
|
JK = (J * (J-1)) / 2
|
|
C .......... FORM ELEMENT OF A*U ..........
|
|
DO 180 K = 1, L
|
|
JK = JK + 1
|
|
IF (K .GT. J) JK = JK + K - 2
|
|
G = G + A(JK) * D(K)
|
|
180 CONTINUE
|
|
C .......... FORM ELEMENT OF P ..........
|
|
E(J) = G / H
|
|
F = F + E(J) * D(J)
|
|
240 CONTINUE
|
|
C
|
|
HH = F / (H + H)
|
|
JK = 0
|
|
C .......... FORM REDUCED A ..........
|
|
DO 260 J = 1, L
|
|
F = D(J)
|
|
G = E(J) - HH * F
|
|
E(J) = G
|
|
C
|
|
DO 260 K = 1, J
|
|
JK = JK + 1
|
|
A(JK) = A(JK) - F * E(K) - G * D(K)
|
|
260 CONTINUE
|
|
C
|
|
290 D(I) = A(IZ+1)
|
|
A(IZ+1) = SCALE * SQRT(H)
|
|
300 CONTINUE
|
|
C
|
|
RETURN
|
|
END
|