mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-01 06:23:39 +01:00
c977aa998f
Replace amos with slatec
276 lines
12 KiB
Fortran
276 lines
12 KiB
Fortran
*DECK ZBESJ
|
|
SUBROUTINE ZBESJ (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
|
|
C***BEGIN PROLOGUE ZBESJ
|
|
C***PURPOSE Compute a sequence of the Bessel functions J(a,z) for
|
|
C complex argument z and real nonnegative orders a=b,b+1,
|
|
C b+2,... where b>0. A scaling option is available to
|
|
C help avoid overflow.
|
|
C***LIBRARY SLATEC
|
|
C***CATEGORY C10A4
|
|
C***TYPE COMPLEX (CBESJ-C, ZBESJ-C)
|
|
C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
|
|
C BESSEL FUNCTIONS OF THE FIRST KIND, J BESSEL FUNCTIONS
|
|
C***AUTHOR Amos, D. E., (SNL)
|
|
C***DESCRIPTION
|
|
C
|
|
C ***A DOUBLE PRECISION ROUTINE***
|
|
C On KODE=1, ZBESJ computes an N member sequence of complex
|
|
C Bessel functions CY(L)=J(FNU+L-1,Z) for real nonnegative
|
|
C orders FNU+L-1, L=1,...,N and complex Z in the cut plane
|
|
C -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESJ returns
|
|
C the scaled functions
|
|
C
|
|
C CY(L) = exp(-abs(Y))*J(FNU+L-1,Z), L=1,...,N and Y=Im(Z)
|
|
C
|
|
C which remove the exponential growth in both the upper and
|
|
C lower half planes as Z goes to infinity. Definitions and
|
|
C notation are found in the NBS Handbook of Mathematical
|
|
C Functions (Ref. 1).
|
|
C
|
|
C Input
|
|
C ZR - DOUBLE PRECISION real part of argument Z
|
|
C ZI - DOUBLE PRECISION imag part of argument Z
|
|
C FNU - DOUBLE PRECISION initial order, FNU>=0
|
|
C KODE - A parameter to indicate the scaling option
|
|
C KODE=1 returns
|
|
C CY(L)=J(FNU+L-1,Z), L=1,...,N
|
|
C =2 returns
|
|
C CY(L)=J(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
|
|
C where Y=Im(Z)
|
|
C N - Number of terms in the sequence, N>=1
|
|
C
|
|
C Output
|
|
C CYR - DOUBLE PRECISION real part of result vector
|
|
C CYI - DOUBLE PRECISION imag part of result vector
|
|
C NZ - Number of underflows set to zero
|
|
C NZ=0 Normal return
|
|
C NZ>0 CY(L)=0, L=N-NZ+1,...,N
|
|
C IERR - Error flag
|
|
C IERR=0 Normal return - COMPUTATION COMPLETED
|
|
C IERR=1 Input error - NO COMPUTATION
|
|
C IERR=2 Overflow - NO COMPUTATION
|
|
C (Im(Z) too large on KODE=1)
|
|
C IERR=3 Precision warning - COMPUTATION COMPLETED
|
|
C (Result has half precision or less
|
|
C because abs(Z) or FNU+N-1 is large)
|
|
C IERR=4 Precision error - NO COMPUTATION
|
|
C (Result has no precision because
|
|
C abs(Z) or FNU+N-1 is too large)
|
|
C IERR=5 Algorithmic error - NO COMPUTATION
|
|
C (Termination condition not met)
|
|
C
|
|
C *Long Description:
|
|
C
|
|
C The computation is carried out by the formulae
|
|
C
|
|
C J(a,z) = exp( a*pi*i/2)*I(a,-i*z), Im(z)>=0
|
|
C
|
|
C J(a,z) = exp(-a*pi*i/2)*I(a, i*z), Im(z)<0
|
|
C
|
|
C where the I Bessel function is computed as described in the
|
|
C prologue to CBESI.
|
|
C
|
|
C For negative orders, the formula
|
|
C
|
|
C J(-a,z) = J(a,z)*cos(a*pi) - Y(a,z)*sin(a*pi)
|
|
C
|
|
C can be used. However, for large orders close to integers, the
|
|
C the function changes radically. When a is a large positive
|
|
C integer, the magnitude of J(-a,z)=J(a,z)*cos(a*pi) is a
|
|
C large negative power of ten. But when a is not an integer,
|
|
C Y(a,z) dominates in magnitude with a large positive power of
|
|
C ten and the most that the second term can be reduced is by
|
|
C unit roundoff from the coefficient. Thus, wide changes can
|
|
C occur within unit roundoff of a large integer for a. Here,
|
|
C large means a>abs(z).
|
|
C
|
|
C In most complex variable computation, one must evaluate ele-
|
|
C mentary functions. When the magnitude of Z or FNU+N-1 is
|
|
C large, losses of significance by argument reduction occur.
|
|
C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
|
|
C losses exceeding half precision are likely and an error flag
|
|
C IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
|
|
C precision unit roundoff limited to 18 digits precision. Also,
|
|
C if either is larger than U2=0.5/UR, then all significance is
|
|
C lost and IERR=4. In order to use the INT function, arguments
|
|
C must be further restricted not to exceed the largest machine
|
|
C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
|
|
C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
|
|
C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
|
|
C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
|
|
C makes U2 limiting in single precision and U3 limiting in
|
|
C double precision. This means that one can expect to retain,
|
|
C in the worst cases on IEEE machines, no digits in single pre-
|
|
C cision and only 6 digits in double precision. Similar con-
|
|
C siderations hold for other machines.
|
|
C
|
|
C The approximate relative error in the magnitude of a complex
|
|
C Bessel function can be expressed as P*10**S where P=MAX(UNIT
|
|
C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
|
|
C sents the increase in error due to argument reduction in the
|
|
C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
|
|
C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
|
|
C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
|
|
C have only absolute accuracy. This is most likely to occur
|
|
C when one component (in magnitude) is larger than the other by
|
|
C several orders of magnitude. If one component is 10**K larger
|
|
C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
|
|
C 0) significant digits; or, stated another way, when K exceeds
|
|
C the exponent of P, no significant digits remain in the smaller
|
|
C component. However, the phase angle retains absolute accuracy
|
|
C because, in complex arithmetic with precision P, the smaller
|
|
C component will not (as a rule) decrease below P times the
|
|
C magnitude of the larger component. In these extreme cases,
|
|
C the principal phase angle is on the order of +P, -P, PI/2-P,
|
|
C or -PI/2+P.
|
|
C
|
|
C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
|
|
C matical Functions, National Bureau of Standards
|
|
C Applied Mathematics Series 55, U. S. Department
|
|
C of Commerce, Tenth Printing (1972) or later.
|
|
C 2. D. E. Amos, Computation of Bessel Functions of
|
|
C Complex Argument, Report SAND83-0086, Sandia National
|
|
C Laboratories, Albuquerque, NM, May 1983.
|
|
C 3. D. E. Amos, Computation of Bessel Functions of
|
|
C Complex Argument and Large Order, Report SAND83-0643,
|
|
C Sandia National Laboratories, Albuquerque, NM, May
|
|
C 1983.
|
|
C 4. D. E. Amos, A Subroutine Package for Bessel Functions
|
|
C of a Complex Argument and Nonnegative Order, Report
|
|
C SAND85-1018, Sandia National Laboratory, Albuquerque,
|
|
C NM, May 1985.
|
|
C 5. D. E. Amos, A portable package for Bessel functions
|
|
C of a complex argument and nonnegative order, ACM
|
|
C Transactions on Mathematical Software, 12 (September
|
|
C 1986), pp. 265-273.
|
|
C
|
|
C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU
|
|
C***REVISION HISTORY (YYMMDD)
|
|
C 830501 DATE WRITTEN
|
|
C 890801 REVISION DATE from Version 3.2
|
|
C 910415 Prologue converted to Version 4.0 format. (BAB)
|
|
C 920128 Category corrected. (WRB)
|
|
C 920811 Prologue revised. (DWL)
|
|
C***END PROLOGUE ZBESJ
|
|
C
|
|
C COMPLEX CI,CSGN,CY,Z,ZN
|
|
DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
|
|
* ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
|
|
* D1MACH, BB, FN, AZ, ZABS, ASCLE, RTOL, ATOL, STI
|
|
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
|
|
DIMENSION CYR(N), CYI(N)
|
|
EXTERNAL ZABS
|
|
DATA HPI /1.57079632679489662D0/
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT ZBESJ
|
|
IERR = 0
|
|
NZ=0
|
|
IF (FNU.LT.0.0D0) IERR=1
|
|
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
|
IF (N.LT.1) IERR=1
|
|
IF (IERR.NE.0) RETURN
|
|
C-----------------------------------------------------------------------
|
|
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
|
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
|
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
|
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
|
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
|
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
|
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
|
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
|
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
|
C-----------------------------------------------------------------------
|
|
TOL = MAX(D1MACH(4),1.0D-18)
|
|
K1 = I1MACH(15)
|
|
K2 = I1MACH(16)
|
|
R1M5 = D1MACH(5)
|
|
K = MIN(ABS(K1),ABS(K2))
|
|
ELIM = 2.303D0*(K*R1M5-3.0D0)
|
|
K1 = I1MACH(14) - 1
|
|
AA = R1M5*K1
|
|
DIG = MIN(AA,18.0D0)
|
|
AA = AA*2.303D0
|
|
ALIM = ELIM + MAX(-AA,-41.45D0)
|
|
RL = 1.2D0*DIG + 3.0D0
|
|
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
|
C-----------------------------------------------------------------------
|
|
C TEST FOR PROPER RANGE
|
|
C-----------------------------------------------------------------------
|
|
AZ = ZABS(ZR,ZI)
|
|
FN = FNU+(N-1)
|
|
AA = 0.5D0/TOL
|
|
BB = I1MACH(9)*0.5D0
|
|
AA = MIN(AA,BB)
|
|
IF (AZ.GT.AA) GO TO 260
|
|
IF (FN.GT.AA) GO TO 260
|
|
AA = SQRT(AA)
|
|
IF (AZ.GT.AA) IERR=3
|
|
IF (FN.GT.AA) IERR=3
|
|
C-----------------------------------------------------------------------
|
|
C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
|
C WHEN FNU IS LARGE
|
|
C-----------------------------------------------------------------------
|
|
CII = 1.0D0
|
|
INU = FNU
|
|
INUH = INU/2
|
|
IR = INU - 2*INUH
|
|
ARG = (FNU-(INU-IR))*HPI
|
|
CSGNR = COS(ARG)
|
|
CSGNI = SIN(ARG)
|
|
IF (MOD(INUH,2).EQ.0) GO TO 40
|
|
CSGNR = -CSGNR
|
|
CSGNI = -CSGNI
|
|
40 CONTINUE
|
|
C-----------------------------------------------------------------------
|
|
C ZN IS IN THE RIGHT HALF PLANE
|
|
C-----------------------------------------------------------------------
|
|
ZNR = ZI
|
|
ZNI = -ZR
|
|
IF (ZI.GE.0.0D0) GO TO 50
|
|
ZNR = -ZNR
|
|
ZNI = -ZNI
|
|
CSGNI = -CSGNI
|
|
CII = -CII
|
|
50 CONTINUE
|
|
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
|
|
* ELIM, ALIM)
|
|
IF (NZ.LT.0) GO TO 130
|
|
NL = N - NZ
|
|
IF (NL.EQ.0) RETURN
|
|
RTOL = 1.0D0/TOL
|
|
ASCLE = D1MACH(1)*RTOL*1.0D+3
|
|
DO 60 I=1,NL
|
|
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
|
|
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
|
|
C CYR(I) = STR
|
|
AA = CYR(I)
|
|
BB = CYI(I)
|
|
ATOL = 1.0D0
|
|
IF (MAX(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 55
|
|
AA = AA*RTOL
|
|
BB = BB*RTOL
|
|
ATOL = TOL
|
|
55 CONTINUE
|
|
STR = AA*CSGNR - BB*CSGNI
|
|
STI = AA*CSGNI + BB*CSGNR
|
|
CYR(I) = STR*ATOL
|
|
CYI(I) = STI*ATOL
|
|
STR = -CSGNI*CII
|
|
CSGNI = CSGNR*CII
|
|
CSGNR = STR
|
|
60 CONTINUE
|
|
RETURN
|
|
130 CONTINUE
|
|
IF(NZ.EQ.(-2)) GO TO 140
|
|
NZ = 0
|
|
IERR = 2
|
|
RETURN
|
|
140 CONTINUE
|
|
NZ=0
|
|
IERR=5
|
|
RETURN
|
|
260 CONTINUE
|
|
NZ=0
|
|
IERR=4
|
|
RETURN
|
|
END
|