mirror of
https://github.com/ashinn/chibi-scheme.git
synced 2025-05-19 05:39:18 +02:00
Adding gabriel benchmarks.
This commit is contained in:
parent
b31b52909e
commit
c48915563b
37 changed files with 20632 additions and 0 deletions
3
Makefile
3
Makefile
|
@ -215,6 +215,9 @@ test-libs: chibi-scheme$(EXE)
|
|||
test: chibi-scheme$(EXE)
|
||||
$(CHIBI) -xscheme tests/r5rs-tests.scm
|
||||
|
||||
bench-gabriel: chibi-scheme$(EXE)
|
||||
./benchmarks/gabriel/run.sh
|
||||
|
||||
########################################################################
|
||||
# Packaging
|
||||
|
||||
|
|
33
benchmarks/gabriel/chibi-prelude.scm
Normal file
33
benchmarks/gabriel/chibi-prelude.scm
Normal file
|
@ -0,0 +1,33 @@
|
|||
|
||||
(import (chibi time) (scheme cxr) (srfi 33))
|
||||
|
||||
(define (timeval->milliseconds tv)
|
||||
(quotient (+ (* 1000000 (timeval-seconds tv)) (timeval-microseconds tv))
|
||||
1000))
|
||||
|
||||
(define (time* thunk)
|
||||
(call-with-output-string
|
||||
(lambda (out)
|
||||
(let* ((orig-output-port (current-output-port))
|
||||
(_ (current-output-port out))
|
||||
(start (car (get-time-of-day)))
|
||||
(result (thunk))
|
||||
(end (car (get-time-of-day)))
|
||||
(_ (current-output-port orig-output-port))
|
||||
(msecs (- (timeval->milliseconds end)
|
||||
(timeval->milliseconds start))))
|
||||
(display "user: ")
|
||||
(display msecs)
|
||||
(display " system: 0")
|
||||
(display " real: ")
|
||||
(display msecs)
|
||||
(display " gc: 0")
|
||||
(newline)
|
||||
(display "result: ")
|
||||
(write result)
|
||||
(newline)
|
||||
result))))
|
||||
|
||||
(define-syntax time
|
||||
(syntax-rules ()
|
||||
((_ expr) (time* (lambda () expr)))))
|
623
benchmarks/gabriel/conform.sch
Normal file
623
benchmarks/gabriel/conform.sch
Normal file
|
@ -0,0 +1,623 @@
|
|||
;
|
||||
; conform.scm [portable/R^399RS version]
|
||||
; By Jim Miller [mods by oz]
|
||||
; [call to run-benchmark added by wdc 14 Feb 1997]
|
||||
|
||||
; (declare (usual-integrations))
|
||||
|
||||
;; SORT
|
||||
|
||||
(define (vector-copy v)
|
||||
(let* ((length (vector-length v))
|
||||
(result (make-vector length)))
|
||||
(let loop ((n 0))
|
||||
(vector-set! result n (vector-ref v n))
|
||||
(if (= n length)
|
||||
v
|
||||
(loop (+ n 1))))))
|
||||
|
||||
(define (sort obj pred)
|
||||
(define (loop l)
|
||||
(if (and (pair? l) (pair? (cdr l)))
|
||||
(split l '() '())
|
||||
l))
|
||||
|
||||
(define (split l one two)
|
||||
(if (pair? l)
|
||||
(split (cdr l) two (cons (car l) one))
|
||||
(merge (loop one) (loop two))))
|
||||
|
||||
(define (merge one two)
|
||||
(cond ((null? one) two)
|
||||
((pred (car two) (car one))
|
||||
(cons (car two)
|
||||
(merge (cdr two) one)))
|
||||
(else
|
||||
(cons (car one)
|
||||
(merge (cdr one) two)))))
|
||||
|
||||
(cond ((or (pair? obj) (null? obj))
|
||||
(loop obj))
|
||||
((vector? obj)
|
||||
(sort! (vector-copy obj) pred))
|
||||
(else
|
||||
(error "sort: argument should be a list or vector" obj))))
|
||||
|
||||
;; This merge sort is stable for partial orders (for predicates like
|
||||
;; <=, rather than like <).
|
||||
|
||||
(define (sort! v pred)
|
||||
(define (sort-internal! vec temp low high)
|
||||
(if (< low high)
|
||||
(let* ((middle (quotient (+ low high) 2))
|
||||
(next (+ middle 1)))
|
||||
(sort-internal! temp vec low middle)
|
||||
(sort-internal! temp vec next high)
|
||||
(let loop ((p low) (p1 low) (p2 next))
|
||||
(if (not (> p high))
|
||||
(cond ((> p1 middle)
|
||||
(vector-set! vec p (vector-ref temp p2))
|
||||
(loop (+ p 1) p1 (+ p2 1)))
|
||||
((or (> p2 high)
|
||||
(pred (vector-ref temp p1)
|
||||
(vector-ref temp p2)))
|
||||
(vector-set! vec p (vector-ref temp p1))
|
||||
(loop (+ p 1) (+ p1 1) p2))
|
||||
(else
|
||||
(vector-set! vec p (vector-ref temp p2))
|
||||
(loop (+ p 1) p1 (+ p2 1)))))))))
|
||||
|
||||
(if (not (vector? v))
|
||||
(error "sort!: argument not a vector" v))
|
||||
|
||||
(sort-internal! v
|
||||
(vector-copy v)
|
||||
0
|
||||
(- (vector-length v) 1))
|
||||
v)
|
||||
|
||||
;; SET OPERATIONS
|
||||
; (representation as lists with distinct elements)
|
||||
|
||||
(define (adjoin element set)
|
||||
(if (memq element set) set (cons element set)))
|
||||
|
||||
(define (eliminate element set)
|
||||
(cond ((null? set) set)
|
||||
((eq? element (car set)) (cdr set))
|
||||
(else (cons (car set) (eliminate element (cdr set))))))
|
||||
|
||||
(define (intersect list1 list2)
|
||||
(let loop ((l list1))
|
||||
(cond ((null? l) '())
|
||||
((memq (car l) list2) (cons (car l) (loop (cdr l))))
|
||||
(else (loop (cdr l))))))
|
||||
|
||||
(define (union list1 list2)
|
||||
(if (null? list1)
|
||||
list2
|
||||
(union (cdr list1)
|
||||
(adjoin (car list1) list2))))
|
||||
|
||||
;; GRAPH NODES
|
||||
|
||||
; (define-structure
|
||||
; (internal-node
|
||||
; (print-procedure (unparser/standard-method
|
||||
; 'graph-node
|
||||
; (lambda (state node)
|
||||
; (unparse-object state (internal-node-name node))))))
|
||||
; name
|
||||
; (green-edges '())
|
||||
; (red-edges '())
|
||||
; blue-edges)
|
||||
|
||||
; Above is MIT version; below is portable
|
||||
|
||||
(define make-internal-node vector)
|
||||
(define (internal-node-name node) (vector-ref node 0))
|
||||
(define (internal-node-green-edges node) (vector-ref node 1))
|
||||
(define (internal-node-red-edges node) (vector-ref node 2))
|
||||
(define (internal-node-blue-edges node) (vector-ref node 3))
|
||||
(define (set-internal-node-name! node name) (vector-set! node 0 name))
|
||||
(define (set-internal-node-green-edges! node edges) (vector-set! node 1 edges))
|
||||
(define (set-internal-node-red-edges! node edges) (vector-set! node 2 edges))
|
||||
(define (set-internal-node-blue-edges! node edges) (vector-set! node 3 edges))
|
||||
|
||||
; End of portability stuff
|
||||
|
||||
(define (make-node name . blue-edges) ; User's constructor
|
||||
(let ((name (if (symbol? name) (symbol->string name) name))
|
||||
(blue-edges (if (null? blue-edges) 'NOT-A-NODE-YET (car blue-edges))))
|
||||
(make-internal-node name '() '() blue-edges)))
|
||||
|
||||
(define (copy-node node)
|
||||
(make-internal-node (name node) '() '() (blue-edges node)))
|
||||
|
||||
; Selectors
|
||||
|
||||
(define name internal-node-name)
|
||||
(define (make-edge-getter selector)
|
||||
(lambda (node)
|
||||
(if (or (none-node? node) (any-node? node))
|
||||
(error "Can't get edges from the ANY or NONE nodes")
|
||||
(selector node))))
|
||||
(define red-edges (make-edge-getter internal-node-red-edges))
|
||||
(define green-edges (make-edge-getter internal-node-green-edges))
|
||||
(define blue-edges (make-edge-getter internal-node-blue-edges))
|
||||
|
||||
; Mutators
|
||||
|
||||
(define (make-edge-setter mutator!)
|
||||
(lambda (node value)
|
||||
(cond ((any-node? node) (error "Can't set edges from the ANY node"))
|
||||
((none-node? node) 'OK)
|
||||
(else (mutator! node value)))))
|
||||
(define set-red-edges! (make-edge-setter set-internal-node-red-edges!))
|
||||
(define set-green-edges! (make-edge-setter set-internal-node-green-edges!))
|
||||
(define set-blue-edges! (make-edge-setter set-internal-node-blue-edges!))
|
||||
|
||||
;; BLUE EDGES
|
||||
|
||||
; (define-structure
|
||||
; (blue-edge
|
||||
; (print-procedure
|
||||
; (unparser/standard-method
|
||||
; 'blue-edge
|
||||
; (lambda (state edge)
|
||||
; (unparse-object state (blue-edge-operation edge))))))
|
||||
; operation arg-node res-node)
|
||||
|
||||
; Above is MIT version; below is portable
|
||||
|
||||
(define make-blue-edge vector)
|
||||
(define (blue-edge-operation edge) (vector-ref edge 0))
|
||||
(define (blue-edge-arg-node edge) (vector-ref edge 1))
|
||||
(define (blue-edge-res-node edge) (vector-ref edge 2))
|
||||
(define (set-blue-edge-operation! edge value) (vector-set! edge 0 value))
|
||||
(define (set-blue-edge-arg-node! edge value) (vector-set! edge 1 value))
|
||||
(define (set-blue-edge-res-node! edge value) (vector-set! edge 2 value))
|
||||
|
||||
; End of portability stuff
|
||||
|
||||
; Selectors
|
||||
(define operation blue-edge-operation)
|
||||
(define arg-node blue-edge-arg-node)
|
||||
(define res-node blue-edge-res-node)
|
||||
|
||||
; Mutators
|
||||
(define set-arg-node! set-blue-edge-arg-node!)
|
||||
(define set-res-node! set-blue-edge-res-node!)
|
||||
|
||||
; Higher level operations on blue edges
|
||||
|
||||
(define (lookup-op op node)
|
||||
(let loop ((edges (blue-edges node)))
|
||||
(cond ((null? edges) '())
|
||||
((eq? op (operation (car edges))) (car edges))
|
||||
(else (loop (cdr edges))))))
|
||||
|
||||
(define (has-op? op node)
|
||||
(not (null? (lookup-op op node))))
|
||||
|
||||
; Add a (new) blue edge to a node
|
||||
|
||||
; (define (adjoin-blue-edge! blue-edge node)
|
||||
; (let ((current-one (lookup-op (operation blue-edge) node)))
|
||||
; (cond ((null? current-one)
|
||||
; (set-blue-edges! node
|
||||
; (cons blue-edge (blue-edges node))))
|
||||
; ((and (eq? (arg-node current-one) (arg-node blue-edge))
|
||||
; (eq? (res-node current-one) (res-node blue-edge)))
|
||||
; 'OK)
|
||||
; (else (error "Two non-equivalent blue edges for op"
|
||||
; blue-edge node)))))
|
||||
|
||||
;; GRAPHS
|
||||
|
||||
; (define-structure
|
||||
; (internal-graph
|
||||
; (print-procedure
|
||||
; (unparser/standard-method 'graph
|
||||
; (lambda (state edge)
|
||||
; (unparse-object state (map name (internal-graph-nodes edge)))))))
|
||||
; nodes already-met already-joined)
|
||||
|
||||
; Above is MIT version; below is portable
|
||||
|
||||
(define make-internal-graph vector)
|
||||
(define (internal-graph-nodes graph) (vector-ref graph 0))
|
||||
(define (internal-graph-already-met graph) (vector-ref graph 1))
|
||||
(define (internal-graph-already-joined graph) (vector-ref graph 2))
|
||||
(define (set-internal-graph-nodes! graph nodes) (vector-set! graph 0 nodes))
|
||||
|
||||
; End of portability stuff
|
||||
|
||||
; Constructor
|
||||
|
||||
(define (make-graph . nodes)
|
||||
(make-internal-graph nodes (make-empty-table) (make-empty-table)))
|
||||
|
||||
; Selectors
|
||||
|
||||
(define graph-nodes internal-graph-nodes)
|
||||
(define already-met internal-graph-already-met)
|
||||
(define already-joined internal-graph-already-joined)
|
||||
|
||||
; Higher level functions on graphs
|
||||
|
||||
(define (add-graph-nodes! graph nodes)
|
||||
(set-internal-graph-nodes! graph (cons nodes (graph-nodes graph))))
|
||||
|
||||
(define (copy-graph g)
|
||||
(define (copy-list l) (vector->list (list->vector l)))
|
||||
(make-internal-graph
|
||||
(copy-list (graph-nodes g))
|
||||
(already-met g)
|
||||
(already-joined g)))
|
||||
|
||||
(define (clean-graph g)
|
||||
(define (clean-node node)
|
||||
(if (not (or (any-node? node) (none-node? node)))
|
||||
(begin
|
||||
(set-green-edges! node '())
|
||||
(set-red-edges! node '()))))
|
||||
(for-each clean-node (graph-nodes g))
|
||||
g)
|
||||
|
||||
(define (canonicalize-graph graph classes)
|
||||
(define (fix node)
|
||||
(define (fix-set object selector mutator)
|
||||
(mutator object
|
||||
(map (lambda (node)
|
||||
(find-canonical-representative node classes))
|
||||
(selector object))))
|
||||
(if (not (or (none-node? node) (any-node? node)))
|
||||
(begin
|
||||
(fix-set node green-edges set-green-edges!)
|
||||
(fix-set node red-edges set-red-edges!)
|
||||
(for-each
|
||||
(lambda (blue-edge)
|
||||
(set-arg-node! blue-edge
|
||||
(find-canonical-representative (arg-node blue-edge) classes))
|
||||
(set-res-node! blue-edge
|
||||
(find-canonical-representative (res-node blue-edge) classes)))
|
||||
(blue-edges node))))
|
||||
node)
|
||||
(define (fix-table table)
|
||||
(define (canonical? node) (eq? node (find-canonical-representative node classes)))
|
||||
(define (filter-and-fix predicate-fn update-fn list)
|
||||
(let loop ((list list))
|
||||
(cond ((null? list) '())
|
||||
((predicate-fn (car list))
|
||||
(cons (update-fn (car list)) (loop (cdr list))))
|
||||
(else (loop (cdr list))))))
|
||||
(define (fix-line line)
|
||||
(filter-and-fix
|
||||
(lambda (entry) (canonical? (car entry)))
|
||||
(lambda (entry) (cons (car entry)
|
||||
(find-canonical-representative (cdr entry) classes)))
|
||||
line))
|
||||
(if (null? table)
|
||||
'()
|
||||
(cons (car table)
|
||||
(filter-and-fix
|
||||
(lambda (entry) (canonical? (car entry)))
|
||||
(lambda (entry) (cons (car entry) (fix-line (cdr entry))))
|
||||
(cdr table)))))
|
||||
(make-internal-graph
|
||||
(map (lambda (class) (fix (car class))) classes)
|
||||
(fix-table (already-met graph))
|
||||
(fix-table (already-joined graph))))
|
||||
|
||||
;; USEFUL NODES
|
||||
|
||||
(define none-node (make-node 'none #t))
|
||||
(define (none-node? node) (eq? node none-node))
|
||||
|
||||
(define any-node (make-node 'any '()))
|
||||
(define (any-node? node) (eq? node any-node))
|
||||
|
||||
;; COLORED EDGE TESTS
|
||||
|
||||
|
||||
(define (green-edge? from-node to-node)
|
||||
(cond ((any-node? from-node) #f)
|
||||
((none-node? from-node) #t)
|
||||
((memq to-node (green-edges from-node)) #t)
|
||||
(else #f)))
|
||||
|
||||
(define (red-edge? from-node to-node)
|
||||
(cond ((any-node? from-node) #f)
|
||||
((none-node? from-node) #t)
|
||||
((memq to-node (red-edges from-node)) #t)
|
||||
(else #f)))
|
||||
|
||||
;; SIGNATURE
|
||||
|
||||
; Return signature (i.e. <arg, res>) given an operation and a node
|
||||
|
||||
(define sig
|
||||
(let ((none-comma-any (cons none-node any-node)))
|
||||
(lambda (op node) ; Returns (arg, res)
|
||||
(let ((the-edge (lookup-op op node)))
|
||||
(if (not (null? the-edge))
|
||||
(cons (arg-node the-edge) (res-node the-edge))
|
||||
none-comma-any)))))
|
||||
|
||||
; Selectors from signature
|
||||
|
||||
(define (arg pair) (car pair))
|
||||
(define (res pair) (cdr pair))
|
||||
|
||||
;; CONFORMITY
|
||||
|
||||
(define (conforms? t1 t2)
|
||||
(define nodes-with-red-edges-out '())
|
||||
(define (add-red-edge! from-node to-node)
|
||||
(set-red-edges! from-node (adjoin to-node (red-edges from-node)))
|
||||
(set! nodes-with-red-edges-out
|
||||
(adjoin from-node nodes-with-red-edges-out)))
|
||||
(define (greenify-red-edges! from-node)
|
||||
(set-green-edges! from-node
|
||||
(append (red-edges from-node) (green-edges from-node)))
|
||||
(set-red-edges! from-node '()))
|
||||
(define (delete-red-edges! from-node)
|
||||
(set-red-edges! from-node '()))
|
||||
(define (does-conform t1 t2)
|
||||
(cond ((or (none-node? t1) (any-node? t2)) #t)
|
||||
((or (any-node? t1) (none-node? t2)) #f)
|
||||
((green-edge? t1 t2) #t)
|
||||
((red-edge? t1 t2) #t)
|
||||
(else
|
||||
(add-red-edge! t1 t2)
|
||||
(let loop ((blues (blue-edges t2)))
|
||||
(if (null? blues)
|
||||
#t
|
||||
(let* ((current-edge (car blues))
|
||||
(phi (operation current-edge)))
|
||||
(and (has-op? phi t1)
|
||||
(does-conform
|
||||
(res (sig phi t1))
|
||||
(res (sig phi t2)))
|
||||
(does-conform
|
||||
(arg (sig phi t2))
|
||||
(arg (sig phi t1)))
|
||||
(loop (cdr blues)))))))))
|
||||
(let ((result (does-conform t1 t2)))
|
||||
(for-each (if result greenify-red-edges! delete-red-edges!)
|
||||
nodes-with-red-edges-out)
|
||||
result))
|
||||
|
||||
(define (equivalent? a b)
|
||||
(and (conforms? a b) (conforms? b a)))
|
||||
|
||||
;; EQUIVALENCE CLASSIFICATION
|
||||
; Given a list of nodes, return a list of equivalence classes
|
||||
|
||||
(define (classify nodes)
|
||||
(let node-loop ((classes '())
|
||||
(nodes nodes))
|
||||
(if (null? nodes)
|
||||
(map (lambda (class)
|
||||
(sort class
|
||||
(lambda (node1 node2)
|
||||
(< (string-length (name node1))
|
||||
(string-length (name node2))))))
|
||||
classes)
|
||||
(let ((this-node (car nodes)))
|
||||
(define (add-node classes)
|
||||
(cond ((null? classes) (list (list this-node)))
|
||||
((equivalent? this-node (caar classes))
|
||||
(cons (cons this-node (car classes))
|
||||
(cdr classes)))
|
||||
(else (cons (car classes)
|
||||
(add-node (cdr classes))))))
|
||||
(node-loop (add-node classes)
|
||||
(cdr nodes))))))
|
||||
|
||||
; Given a node N and a classified set of nodes,
|
||||
; find the canonical member corresponding to N
|
||||
|
||||
(define (find-canonical-representative element classification)
|
||||
(let loop ((classes classification))
|
||||
(cond ((null? classes) (error "Can't classify" element))
|
||||
((memq element (car classes)) (car (car classes)))
|
||||
(else (loop (cdr classes))))))
|
||||
|
||||
; Reduce a graph by taking only one member of each equivalence
|
||||
; class and canonicalizing all outbound pointers
|
||||
|
||||
(define (reduce graph)
|
||||
(let ((classes (classify (graph-nodes graph))))
|
||||
(canonicalize-graph graph classes)))
|
||||
|
||||
;; TWO DIMENSIONAL TABLES
|
||||
|
||||
(define (make-empty-table) (list 'TABLE))
|
||||
|
||||
(define (lookup table x y)
|
||||
(let ((one (assq x (cdr table))))
|
||||
(if one
|
||||
(let ((two (assq y (cdr one))))
|
||||
(if two (cdr two) #f))
|
||||
#f)))
|
||||
|
||||
(define (insert! table x y value)
|
||||
(define (make-singleton-table x y)
|
||||
(list (cons x y)))
|
||||
(let ((one (assq x (cdr table))))
|
||||
(if one
|
||||
(set-cdr! one (cons (cons y value) (cdr one)))
|
||||
(set-cdr! table (cons (cons x (make-singleton-table y value))
|
||||
(cdr table))))))
|
||||
|
||||
;; MEET/JOIN
|
||||
; These update the graph when computing the node for node1*node2
|
||||
|
||||
(define (blue-edge-operate arg-fn res-fn graph op sig1 sig2)
|
||||
(make-blue-edge op
|
||||
(arg-fn graph (arg sig1) (arg sig2))
|
||||
(res-fn graph (res sig1) (res sig2))))
|
||||
|
||||
(define (meet graph node1 node2)
|
||||
(cond ((eq? node1 node2) node1)
|
||||
((or (any-node? node1) (any-node? node2)) any-node) ; canonicalize
|
||||
((none-node? node1) node2)
|
||||
((none-node? node2) node1)
|
||||
((lookup (already-met graph) node1 node2)) ; return it if found
|
||||
((conforms? node1 node2) node2)
|
||||
((conforms? node2 node1) node1)
|
||||
(else
|
||||
(let ((result
|
||||
(make-node (string-append "(" (name node1) " ^ " (name node2) ")"))))
|
||||
(add-graph-nodes! graph result)
|
||||
(insert! (already-met graph) node1 node2 result)
|
||||
(set-blue-edges! result
|
||||
(map
|
||||
(lambda (op)
|
||||
(blue-edge-operate join meet graph op (sig op node1) (sig op node2)))
|
||||
(intersect (map operation (blue-edges node1))
|
||||
(map operation (blue-edges node2)))))
|
||||
result))))
|
||||
|
||||
(define (join graph node1 node2)
|
||||
(cond ((eq? node1 node2) node1)
|
||||
((any-node? node1) node2)
|
||||
((any-node? node2) node1)
|
||||
((or (none-node? node1) (none-node? node2)) none-node) ; canonicalize
|
||||
((lookup (already-joined graph) node1 node2)) ; return it if found
|
||||
((conforms? node1 node2) node1)
|
||||
((conforms? node2 node1) node2)
|
||||
(else
|
||||
(let ((result
|
||||
(make-node (string-append "(" (name node1) " v " (name node2) ")"))))
|
||||
(add-graph-nodes! graph result)
|
||||
(insert! (already-joined graph) node1 node2 result)
|
||||
(set-blue-edges! result
|
||||
(map
|
||||
(lambda (op)
|
||||
(blue-edge-operate meet join graph op (sig op node1) (sig op node2)))
|
||||
(union (map operation (blue-edges node1))
|
||||
(map operation (blue-edges node2)))))
|
||||
result))))
|
||||
|
||||
;; MAKE A LATTICE FROM A GRAPH
|
||||
|
||||
(define (make-lattice g print?)
|
||||
(define (step g)
|
||||
(let* ((copy (copy-graph g))
|
||||
(nodes (graph-nodes copy)))
|
||||
(for-each (lambda (first)
|
||||
(for-each (lambda (second)
|
||||
(meet copy first second)
|
||||
(join copy first second))
|
||||
nodes))
|
||||
nodes)
|
||||
copy))
|
||||
(define (loop g count)
|
||||
(if print? (display count))
|
||||
(let ((lattice (step g)))
|
||||
(if print? (begin (display " -> ")
|
||||
(display (length (graph-nodes lattice)))))
|
||||
(let* ((new-g (reduce lattice))
|
||||
(new-count (length (graph-nodes new-g))))
|
||||
(if (= new-count count)
|
||||
(begin
|
||||
(if print? (newline))
|
||||
new-g)
|
||||
(begin
|
||||
(if print? (begin (display " -> ")
|
||||
(display new-count) (newline)))
|
||||
(loop new-g new-count))))))
|
||||
(let ((graph
|
||||
(apply make-graph
|
||||
(adjoin any-node (adjoin none-node (graph-nodes (clean-graph g)))))))
|
||||
(loop graph (length (graph-nodes graph)))))
|
||||
|
||||
;; DEBUG and TEST
|
||||
|
||||
(define a '())
|
||||
(define b '())
|
||||
(define c '())
|
||||
(define d '())
|
||||
|
||||
(define (reset)
|
||||
(set! a (make-node 'a))
|
||||
(set! b (make-node 'b))
|
||||
(set-blue-edges! a (list (make-blue-edge 'phi any-node b)))
|
||||
(set-blue-edges! b (list (make-blue-edge 'phi any-node a)
|
||||
(make-blue-edge 'theta any-node b)))
|
||||
(set! c (make-node "c"))
|
||||
(set! d (make-node "d"))
|
||||
(set-blue-edges! c (list (make-blue-edge 'theta any-node b)))
|
||||
(set-blue-edges! d (list (make-blue-edge 'phi any-node c)
|
||||
(make-blue-edge 'theta any-node d)))
|
||||
'(made a b c d))
|
||||
|
||||
(define (test)
|
||||
(reset)
|
||||
(map name
|
||||
(graph-nodes
|
||||
(make-lattice (make-graph a b c d any-node none-node) #t))))
|
||||
;;; note printflag #t
|
||||
;(define (time-test)
|
||||
; (let ((t (runtime)))
|
||||
; (let ((ans (test)))
|
||||
; (cons ans (- (runtime) t)))))
|
||||
|
||||
;
|
||||
; run and make sure result is correct
|
||||
;
|
||||
(define (go)
|
||||
(reset)
|
||||
(let ((result '("(((b v d) ^ a) v c)"
|
||||
"(c ^ d)"
|
||||
"(b v (a ^ d))"
|
||||
"((a v d) ^ b)"
|
||||
"(b v d)"
|
||||
"(b ^ (a v c))"
|
||||
"(a v (c ^ d))"
|
||||
"((b v d) ^ a)"
|
||||
"(c v (a v d))"
|
||||
"(a v c)"
|
||||
"(d v (b ^ (a v c)))"
|
||||
"(d ^ (a v c))"
|
||||
"((a ^ d) v c)"
|
||||
"((a ^ b) v d)"
|
||||
"(((a v d) ^ b) v (a ^ d))"
|
||||
"(b ^ d)"
|
||||
"(b v (a v d))"
|
||||
"(a ^ c)"
|
||||
"(b ^ (c v d))"
|
||||
"(a ^ b)"
|
||||
"(a v b)"
|
||||
"((a ^ d) ^ b)"
|
||||
"(a ^ d)"
|
||||
"(a v d)"
|
||||
"d"
|
||||
"(c v d)"
|
||||
"a"
|
||||
"b"
|
||||
"c"
|
||||
"any"
|
||||
"none")))
|
||||
|
||||
(if (equal? (test) result)
|
||||
(display " ok.")
|
||||
(display " um."))
|
||||
(newline)))
|
||||
|
||||
;[mods made by wdc]
|
||||
;(go)
|
||||
;(exit)
|
||||
|
||||
(time (let loop ((n 10))
|
||||
(if (zero? n)
|
||||
'done
|
||||
(begin
|
||||
(go)
|
||||
(loop (- n 1))))))
|
||||
|
||||
|
||||
|
34
benchmarks/gabriel/cpstack.sch
Normal file
34
benchmarks/gabriel/cpstack.sch
Normal file
|
@ -0,0 +1,34 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: cpstak.sch
|
||||
; Description: continuation-passing version of TAK
|
||||
; Author: Will Clinger
|
||||
; Created: 20-Aug-87
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; CPSTAK -- A continuation-passing version of the TAK benchmark.
|
||||
;;; A good test of first class procedures and tail recursion.
|
||||
|
||||
(define (cpstak x y z)
|
||||
(define (tak x y z k)
|
||||
(if (not (< y x))
|
||||
(k z)
|
||||
(tak (- x 1)
|
||||
y
|
||||
z
|
||||
(lambda (v1)
|
||||
(tak (- y 1)
|
||||
z
|
||||
x
|
||||
(lambda (v2)
|
||||
(tak (- z 1)
|
||||
x
|
||||
y
|
||||
(lambda (v3)
|
||||
(tak v1 v2 v3 k)))))))))
|
||||
(tak x y z (lambda (a) a)))
|
||||
|
||||
;;; call: (cpstak 18 12 6)
|
||||
|
||||
(time (cpstak 18 12 2))
|
61
benchmarks/gabriel/ctak.sch
Normal file
61
benchmarks/gabriel/ctak.sch
Normal file
|
@ -0,0 +1,61 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: ctak.sch
|
||||
; Description: The ctak benchmark
|
||||
; Author: Richard Gabriel
|
||||
; Created: 5-Apr-85
|
||||
; Modified: 10-Apr-85 14:53:02 (Bob Shaw)
|
||||
; 24-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; The original version of this benchmark used a continuation mechanism that
|
||||
; is less powerful than call-with-current-continuation and also relied on
|
||||
; dynamic binding, which is not provided in standard Scheme. Since the
|
||||
; intent of the benchmark seemed to be to test non-local exits, the dynamic
|
||||
; binding has been replaced here by lexical binding.
|
||||
|
||||
; For Scheme the comment that follows should read:
|
||||
;;; CTAK -- A version of the TAK procedure that uses continuations.
|
||||
|
||||
;;; CTAK -- A version of the TAK function that uses the CATCH/THROW facility.
|
||||
|
||||
(define (ctak x y z)
|
||||
(call-with-current-continuation
|
||||
(lambda (k)
|
||||
(ctak-aux k x y z))))
|
||||
|
||||
(define (ctak-aux k x y z)
|
||||
(cond ((not (< y x)) ;xy
|
||||
(k z))
|
||||
(else (call-with-current-continuation
|
||||
(ctak-aux
|
||||
k
|
||||
(call-with-current-continuation
|
||||
(lambda (k)
|
||||
(ctak-aux k
|
||||
(- x 1)
|
||||
y
|
||||
z)))
|
||||
(call-with-current-continuation
|
||||
(lambda (k)
|
||||
(ctak-aux k
|
||||
(- y 1)
|
||||
z
|
||||
x)))
|
||||
(call-with-current-continuation
|
||||
(lambda (k)
|
||||
(ctak-aux k
|
||||
(- z 1)
|
||||
x
|
||||
y))))))))
|
||||
|
||||
;;; call: (ctak 18 12 6)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 8) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1)
|
||||
(ctak 18 12 (if input 6 0)))))))
|
||||
|
97
benchmarks/gabriel/dderiv.sch
Normal file
97
benchmarks/gabriel/dderiv.sch
Normal file
|
@ -0,0 +1,97 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: dderiv.sch
|
||||
; Description: DDERIV benchmark from the Gabriel tests
|
||||
; Author: Vaughan Pratt
|
||||
; Created: 8-Apr-85
|
||||
; Modified: 10-Apr-85 14:53:29 (Bob Shaw)
|
||||
; 23-Jul-87 (Will Clinger)
|
||||
; 9-Feb-88 (Will Clinger)
|
||||
; Language: Scheme (but see note below)
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; Note: This benchmark uses property lists. The procedures that must
|
||||
; be supplied are get and put, where (put x y z) is equivalent to Common
|
||||
; Lisp's (setf (get x y) z).
|
||||
|
||||
;;; DDERIV -- Symbolic derivative benchmark written by Vaughn Pratt.
|
||||
|
||||
;;; This benchmark is a variant of the simple symbolic derivative program
|
||||
;;; (DERIV). The main change is that it is `table-driven.' Instead of using a
|
||||
;;; large COND that branches on the CAR of the expression, this program finds
|
||||
;;; the code that will take the derivative on the property list of the atom in
|
||||
;;; the CAR position. So, when the expression is (+ . <rest>), the code
|
||||
;;; stored under the atom '+ with indicator DERIV will take <rest> and
|
||||
;;; return the derivative for '+. The way that MacLisp does this is with the
|
||||
;;; special form: (DEFUN (FOO BAR) ...). This is exactly like DEFUN with an
|
||||
;;; atomic name in that it expects an argument list and the compiler compiles
|
||||
;;; code, but the name of the function with that code is stored on the
|
||||
;;; property list of FOO under the indicator BAR, in this case. You may have
|
||||
;;; to do something like:
|
||||
|
||||
;;; :property keyword is not Common Lisp.
|
||||
|
||||
; Returns the wrong answer for quotients.
|
||||
; Fortunately these aren't used in the benchmark.
|
||||
|
||||
(define pg-alist '())
|
||||
(define (put sym d what)
|
||||
(set! pg-alist (cons (cons sym what) pg-alist)))
|
||||
(define (get sym d)
|
||||
(cdr (assq sym pg-alist)))
|
||||
|
||||
(define (dderiv-aux a)
|
||||
(list '/ (dderiv a) a))
|
||||
|
||||
(define (f+dderiv a)
|
||||
(cons '+ (map dderiv a)))
|
||||
|
||||
(define (f-dderiv a)
|
||||
(cons '- (map dderiv a)))
|
||||
|
||||
(define (*dderiv a)
|
||||
(list '* (cons '* a)
|
||||
(cons '+ (map dderiv-aux a))))
|
||||
|
||||
(define (/dderiv a)
|
||||
(list '-
|
||||
(list '/
|
||||
(dderiv (car a))
|
||||
(cadr a))
|
||||
(list '/
|
||||
(car a)
|
||||
(list '*
|
||||
(cadr a)
|
||||
(cadr a)
|
||||
(dderiv (cadr a))))))
|
||||
|
||||
(define (dderiv a)
|
||||
(cond
|
||||
((not (pair? a))
|
||||
(cond ((eq? a 'x) 1) (else 0)))
|
||||
(else (let ((dderiv (get (car a) 'dderiv)))
|
||||
(cond (dderiv (dderiv (cdr a)))
|
||||
(else 'error))))))
|
||||
|
||||
(define (run)
|
||||
(do ((i 0 (+ i 1)))
|
||||
((= i 50000))
|
||||
(dderiv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(dderiv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(dderiv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(dderiv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(dderiv '(+ (* 3 x x) (* a x x) (* b x) 5))))
|
||||
|
||||
(put '+ 'dderiv f+dderiv) ; install procedure on the property list
|
||||
|
||||
(put '- 'dderiv f-dderiv) ; install procedure on the property list
|
||||
|
||||
(put '* 'dderiv *dderiv) ; install procedure on the property list
|
||||
|
||||
(put '/ 'dderiv /dderiv) ; install procedure on the property list
|
||||
|
||||
;;; call: (run)
|
||||
|
||||
(time (run))
|
||||
|
||||
|
59
benchmarks/gabriel/deriv.sch
Normal file
59
benchmarks/gabriel/deriv.sch
Normal file
|
@ -0,0 +1,59 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: deriv.sch
|
||||
; Description: The DERIV benchmark from the Gabriel tests.
|
||||
; Author: Vaughan Pratt
|
||||
; Created: 8-Apr-85
|
||||
; Modified: 10-Apr-85 14:53:50 (Bob Shaw)
|
||||
; 23-Jul-87 (Will Clinger)
|
||||
; 9-Feb-88 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; DERIV -- Symbolic derivative benchmark written by Vaughn Pratt.
|
||||
;;; It uses a simple subset of Lisp and does a lot of CONSing.
|
||||
|
||||
; Returns the wrong answer for quotients.
|
||||
; Fortunately these aren't used in the benchmark.
|
||||
|
||||
(define (deriv-aux a) (list '/ (deriv a) a))
|
||||
|
||||
(define (deriv a)
|
||||
(cond
|
||||
((not (pair? a))
|
||||
(cond ((eq? a 'x) 1) (else 0)))
|
||||
((eq? (car a) '+)
|
||||
(cons '+ (map deriv (cdr a))))
|
||||
((eq? (car a) '-)
|
||||
(cons '- (map deriv
|
||||
(cdr a))))
|
||||
((eq? (car a) '*)
|
||||
(list '*
|
||||
a
|
||||
(cons '+ (map deriv-aux (cdr a)))))
|
||||
((eq? (car a) '/)
|
||||
(list '-
|
||||
(list '/
|
||||
(deriv (cadr a))
|
||||
(caddr a))
|
||||
(list '/
|
||||
(cadr a)
|
||||
(list '*
|
||||
(caddr a)
|
||||
(caddr a)
|
||||
(deriv (caddr a))))))
|
||||
(else 'error)))
|
||||
|
||||
(define (run)
|
||||
(do ((i 0 (+ i 1)))
|
||||
((= i 50000))
|
||||
(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))
|
||||
(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))))
|
||||
|
||||
;;; call: (run)
|
||||
|
||||
(time (run))
|
||||
|
70
benchmarks/gabriel/destruct.sch
Normal file
70
benchmarks/gabriel/destruct.sch
Normal file
|
@ -0,0 +1,70 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: destruct.sch
|
||||
; Description: DESTRUCTIVE benchmark from Gabriel tests
|
||||
; Author: Bob Shaw, HPLabs/ATC
|
||||
; Created: 8-Apr-85
|
||||
; Modified: 10-Apr-85 14:54:12 (Bob Shaw)
|
||||
; 23-Jul-87 (Will Clinger)
|
||||
; 22-Jan-88 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; append! is no longer a standard Scheme procedure, so it must be defined
|
||||
; for implementations that don't already have it.
|
||||
|
||||
(define (my-append! x y)
|
||||
(if (null? x)
|
||||
y
|
||||
(do ((a x b)
|
||||
(b (cdr x) (cdr b)))
|
||||
((null? b)
|
||||
(set-cdr! a y)
|
||||
x))))
|
||||
|
||||
;;; DESTRU -- Destructive operation benchmark
|
||||
|
||||
(define (destructive n m)
|
||||
(let ((l (do ((i 10 (- i 1))
|
||||
(a '() (cons '() a)))
|
||||
((= i 0) a))))
|
||||
(do ((i n (- i 1)))
|
||||
((= i 0))
|
||||
(cond ((null? (car l))
|
||||
(do ((l l (cdr l)))
|
||||
((null? l))
|
||||
(or (car l)
|
||||
(set-car! l (cons '() '())))
|
||||
(my-append! (car l)
|
||||
(do ((j m (- j 1))
|
||||
(a '() (cons '() a)))
|
||||
((= j 0) a)))))
|
||||
(else
|
||||
(do ((l1 l (cdr l1))
|
||||
(l2 (cdr l) (cdr l2)))
|
||||
((null? l2))
|
||||
(set-cdr! (do ((j (quotient (length (car l2)) 2) (- j 1))
|
||||
(a (car l2) (cdr a)))
|
||||
((zero? j) a)
|
||||
(set-car! a i))
|
||||
(let ((n (quotient (length (car l1)) 2)))
|
||||
(cond ((= n 0) (set-car! l1 '())
|
||||
(car l1))
|
||||
(else
|
||||
(do ((j n (- j 1))
|
||||
(a (car l1) (cdr a)))
|
||||
((= j 1)
|
||||
(let ((x (cdr a)))
|
||||
(set-cdr! a '())
|
||||
x))
|
||||
(set-car! a i))))))))))))
|
||||
|
||||
;;; call: (destructive 600 50)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 10) (v 0))
|
||||
(if (zero? n)
|
||||
'v
|
||||
(loop (- n 1)
|
||||
(destructive (if input 600 0) 500))))))
|
||||
|
57
benchmarks/gabriel/div.sch
Normal file
57
benchmarks/gabriel/div.sch
Normal file
|
@ -0,0 +1,57 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: div.sch
|
||||
; Description: DIV benchmarks
|
||||
; Author: Richard Gabriel
|
||||
; Created: 8-Apr-85
|
||||
; Modified: 19-Jul-85 18:28:01 (Bob Shaw)
|
||||
; 23-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; DIV2 -- Benchmark which divides by 2 using lists of n ()'s.
|
||||
;;; This file contains a recursive as well as an iterative test.
|
||||
|
||||
(define (create-n n)
|
||||
(do ((n n (- n 1))
|
||||
(a '() (cons '() a)))
|
||||
((= n 0) a)))
|
||||
|
||||
(define *ll* (create-n 200))
|
||||
|
||||
(define (iterative-div2 l)
|
||||
(do ((l l (cddr l))
|
||||
(a '() (cons (car l) a)))
|
||||
((null? l) a)))
|
||||
|
||||
(define (recursive-div2 l)
|
||||
(cond ((null? l) '())
|
||||
(else (cons (car l) (recursive-div2 (cddr l))))))
|
||||
|
||||
(define (test-1 l)
|
||||
(do ((i 3000 (- i 1)))
|
||||
((= i 0))
|
||||
(iterative-div2 l)
|
||||
(iterative-div2 l)
|
||||
(iterative-div2 l)
|
||||
(iterative-div2 l)))
|
||||
|
||||
(define (test-2 l)
|
||||
(do ((i 3000 (- i 1)))
|
||||
((= i 0))
|
||||
(recursive-div2 l)
|
||||
(recursive-div2 l)
|
||||
(recursive-div2 l)
|
||||
(recursive-div2 l)))
|
||||
|
||||
;;; for the iterative test call: (test-1 *ll*)
|
||||
;;; for the recursive test call: (test-2 *ll*)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 10) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1)
|
||||
(cons
|
||||
(test-1 (if input *ll* '()))
|
||||
(test-2 (if input *ll* '()))))))))
|
649
benchmarks/gabriel/earley.sch
Normal file
649
benchmarks/gabriel/earley.sch
Normal file
|
@ -0,0 +1,649 @@
|
|||
;;; EARLEY -- Earley's parser, written by Marc Feeley.
|
||||
|
||||
; $Id: earley.sch,v 1.2 1999/07/12 18:05:19 lth Exp $
|
||||
; 990708 / lth -- changed 'main' to 'earley-benchmark'.
|
||||
;
|
||||
; (make-parser grammar lexer) is used to create a parser from the grammar
|
||||
; description `grammar' and the lexer function `lexer'.
|
||||
;
|
||||
; A grammar is a list of definitions. Each definition defines a non-terminal
|
||||
; by a set of rules. Thus a definition has the form: (nt rule1 rule2...).
|
||||
; A given non-terminal can only be defined once. The first non-terminal
|
||||
; defined is the grammar's goal. Each rule is a possibly empty list of
|
||||
; non-terminals. Thus a rule has the form: (nt1 nt2...). A non-terminal
|
||||
; can be any scheme value. Note that all grammar symbols are treated as
|
||||
; non-terminals. This is fine though because the lexer will be outputing
|
||||
; non-terminals.
|
||||
;
|
||||
; The lexer defines what a token is and the mapping between tokens and
|
||||
; the grammar's non-terminals. It is a function of one argument, the input,
|
||||
; that returns the list of tokens corresponding to the input. Each token is
|
||||
; represented by a list. The first element is some `user-defined' information
|
||||
; associated with the token and the rest represents the token's class(es) (as a
|
||||
; list of non-terminals that this token corresponds to).
|
||||
;
|
||||
; The result of `make-parser' is a function that parses the single input it
|
||||
; is given into the grammar's goal. The result is a `parse' which can be
|
||||
; manipulated with the procedures: `parse->parsed?', `parse->trees'
|
||||
; and `parse->nb-trees' (see below).
|
||||
;
|
||||
; Let's assume that we want a parser for the grammar
|
||||
;
|
||||
; S -> x = E
|
||||
; E -> E + E | V
|
||||
; V -> V y |
|
||||
;
|
||||
; and that the input to the parser is a string of characters. Also, assume we
|
||||
; would like to map the characters `x', `y', `+' and `=' into the corresponding
|
||||
; non-terminals in the grammar. Such a parser could be created with
|
||||
;
|
||||
; (make-parser
|
||||
; '(
|
||||
; (s (x = e))
|
||||
; (e (e + e) (v))
|
||||
; (v (v y) ())
|
||||
; )
|
||||
; (lambda (str)
|
||||
; (map (lambda (char)
|
||||
; (list char ; user-info = the character itself
|
||||
; (case char
|
||||
; ((#\x) 'x)
|
||||
; ((#\y) 'y)
|
||||
; ((#\+) '+)
|
||||
; ((#\=) '=)
|
||||
; (else (fatal-error "lexer error")))))
|
||||
; (string->list str)))
|
||||
; )
|
||||
;
|
||||
; An alternative definition (that does not check for lexical errors) is
|
||||
;
|
||||
; (make-parser
|
||||
; '(
|
||||
; (s (#\x #\= e))
|
||||
; (e (e #\+ e) (v))
|
||||
; (v (v #\y) ())
|
||||
; )
|
||||
; (lambda (str) (map (lambda (char) (list char char)) (string->list str)))
|
||||
; )
|
||||
;
|
||||
; To help with the rest of the discussion, here are a few definitions:
|
||||
;
|
||||
; An input pointer (for an input of `n' tokens) is a value between 0 and `n'.
|
||||
; It indicates a point between two input tokens (0 = beginning, `n' = end).
|
||||
; For example, if `n' = 4, there are 5 input pointers:
|
||||
;
|
||||
; input token1 token2 token3 token4
|
||||
; input pointers 0 1 2 3 4
|
||||
;
|
||||
; A configuration indicates the extent to which a given rule is parsed (this
|
||||
; is the common `dot notation'). For simplicity, a configuration is
|
||||
; represented as an integer, with successive configurations in the same
|
||||
; rule associated with successive integers. It is assumed that the grammar
|
||||
; has been extended with rules to aid scanning. These rules are of the
|
||||
; form `nt ->', and there is one such rule for every non-terminal. Note
|
||||
; that these rules are special because they only apply when the corresponding
|
||||
; non-terminal is returned by the lexer.
|
||||
;
|
||||
; A configuration set is a configuration grouped with the set of input pointers
|
||||
; representing where the head non-terminal of the configuration was predicted.
|
||||
;
|
||||
; Here are the rules and configurations for the grammar given above:
|
||||
;
|
||||
; S -> . \
|
||||
; 0 |
|
||||
; x -> . |
|
||||
; 1 |
|
||||
; = -> . |
|
||||
; 2 |
|
||||
; E -> . |
|
||||
; 3 > special rules (for scanning)
|
||||
; + -> . |
|
||||
; 4 |
|
||||
; V -> . |
|
||||
; 5 |
|
||||
; y -> . |
|
||||
; 6 /
|
||||
; S -> . x . = . E .
|
||||
; 7 8 9 10
|
||||
; E -> . E . + . E .
|
||||
; 11 12 13 14
|
||||
; E -> . V .
|
||||
; 15 16
|
||||
; V -> . V . y .
|
||||
; 17 18 19
|
||||
; V -> .
|
||||
; 20
|
||||
;
|
||||
; Starters of the non-terminal `nt' are configurations that are leftmost
|
||||
; in a non-special rule for `nt'. Enders of the non-terminal `nt' are
|
||||
; configurations that are rightmost in any rule for `nt'. Predictors of the
|
||||
; non-terminal `nt' are configurations that are directly to the left of `nt'
|
||||
; in any rule.
|
||||
;
|
||||
; For the grammar given above,
|
||||
;
|
||||
; Starters of V = (17 20)
|
||||
; Enders of V = (5 19 20)
|
||||
; Predictors of V = (15 17)
|
||||
|
||||
(define (make-parser grammar lexer)
|
||||
|
||||
(define (non-terminals grammar) ; return vector of non-terminals in grammar
|
||||
|
||||
(define (add-nt nt nts)
|
||||
(if (member nt nts) nts (cons nt nts))) ; use equal? for equality tests
|
||||
|
||||
(let def-loop ((defs grammar) (nts '()))
|
||||
(if (pair? defs)
|
||||
(let* ((def (car defs))
|
||||
(head (car def)))
|
||||
(let rule-loop ((rules (cdr def))
|
||||
(nts (add-nt head nts)))
|
||||
(if (pair? rules)
|
||||
(let ((rule (car rules)))
|
||||
(let loop ((l rule) (nts nts))
|
||||
(if (pair? l)
|
||||
(let ((nt (car l)))
|
||||
(loop (cdr l) (add-nt nt nts)))
|
||||
(rule-loop (cdr rules) nts))))
|
||||
(def-loop (cdr defs) nts))))
|
||||
(list->vector (reverse nts))))) ; goal non-terminal must be at index 0
|
||||
|
||||
(define (ind nt nts) ; return index of non-terminal `nt' in `nts'
|
||||
(let loop ((i (- (vector-length nts) 1)))
|
||||
(if (>= i 0)
|
||||
(if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
|
||||
#f)))
|
||||
|
||||
(define (nb-configurations grammar) ; return nb of configurations in grammar
|
||||
(let def-loop ((defs grammar) (nb-confs 0))
|
||||
(if (pair? defs)
|
||||
(let ((def (car defs)))
|
||||
(let rule-loop ((rules (cdr def)) (nb-confs nb-confs))
|
||||
(if (pair? rules)
|
||||
(let ((rule (car rules)))
|
||||
(let loop ((l rule) (nb-confs nb-confs))
|
||||
(if (pair? l)
|
||||
(loop (cdr l) (+ nb-confs 1))
|
||||
(rule-loop (cdr rules) (+ nb-confs 1)))))
|
||||
(def-loop (cdr defs) nb-confs))))
|
||||
nb-confs)))
|
||||
|
||||
; First, associate a numeric identifier to every non-terminal in the
|
||||
; grammar (with the goal non-terminal associated with 0).
|
||||
;
|
||||
; So, for the grammar given above we get:
|
||||
;
|
||||
; s -> 0 x -> 1 = -> 4 e ->3 + -> 4 v -> 5 y -> 6
|
||||
|
||||
(let* ((nts (non-terminals grammar)) ; id map = list of non-terms
|
||||
(nb-nts (vector-length nts)) ; the number of non-terms
|
||||
(nb-confs (+ (nb-configurations grammar) nb-nts)) ; the nb of confs
|
||||
(starters (make-vector nb-nts '())) ; starters for every non-term
|
||||
(enders (make-vector nb-nts '())) ; enders for every non-term
|
||||
(predictors (make-vector nb-nts '())) ; predictors for every non-term
|
||||
(steps (make-vector nb-confs #f)) ; what to do in a given conf
|
||||
(names (make-vector nb-confs #f))) ; name of rules
|
||||
|
||||
(define (setup-tables grammar nts starters enders predictors steps names)
|
||||
|
||||
(define (add-conf conf nt nts class)
|
||||
(let ((i (ind nt nts)))
|
||||
(vector-set! class i (cons conf (vector-ref class i)))))
|
||||
|
||||
(let ((nb-nts (vector-length nts)))
|
||||
|
||||
(let nt-loop ((i (- nb-nts 1)))
|
||||
(if (>= i 0)
|
||||
(begin
|
||||
(vector-set! steps i (- i nb-nts))
|
||||
(vector-set! names i (list (vector-ref nts i) 0))
|
||||
(vector-set! enders i (list i))
|
||||
(nt-loop (- i 1)))))
|
||||
|
||||
(let def-loop ((defs grammar) (conf (vector-length nts)))
|
||||
(if (pair? defs)
|
||||
(let* ((def (car defs))
|
||||
(head (car def)))
|
||||
(let rule-loop ((rules (cdr def)) (conf conf) (rule-num 1))
|
||||
(if (pair? rules)
|
||||
(let ((rule (car rules)))
|
||||
(vector-set! names conf (list head rule-num))
|
||||
(add-conf conf head nts starters)
|
||||
(let loop ((l rule) (conf conf))
|
||||
(if (pair? l)
|
||||
(let ((nt (car l)))
|
||||
(vector-set! steps conf (ind nt nts))
|
||||
(add-conf conf nt nts predictors)
|
||||
(loop (cdr l) (+ conf 1)))
|
||||
(begin
|
||||
(vector-set! steps conf (- (ind head nts) nb-nts))
|
||||
(add-conf conf head nts enders)
|
||||
(rule-loop (cdr rules) (+ conf 1) (+ rule-num 1))))))
|
||||
(def-loop (cdr defs) conf))))))))
|
||||
|
||||
; Now, for each non-terminal, compute the starters, enders and predictors and
|
||||
; the names and steps tables.
|
||||
|
||||
(setup-tables grammar nts starters enders predictors steps names)
|
||||
|
||||
; Build the parser description
|
||||
|
||||
(let ((parser-descr (vector lexer
|
||||
nts
|
||||
starters
|
||||
enders
|
||||
predictors
|
||||
steps
|
||||
names)))
|
||||
(lambda (input)
|
||||
|
||||
(define (ind nt nts) ; return index of non-terminal `nt' in `nts'
|
||||
(let loop ((i (- (vector-length nts) 1)))
|
||||
(if (>= i 0)
|
||||
(if (equal? (vector-ref nts i) nt) i (loop (- i 1)))
|
||||
#f)))
|
||||
|
||||
(define (comp-tok tok nts) ; transform token to parsing format
|
||||
(let loop ((l1 (cdr tok)) (l2 '()))
|
||||
(if (pair? l1)
|
||||
(let ((i (ind (car l1) nts)))
|
||||
(if i
|
||||
(loop (cdr l1) (cons i l2))
|
||||
(loop (cdr l1) l2)))
|
||||
(cons (car tok) (reverse l2)))))
|
||||
|
||||
(define (input->tokens input lexer nts)
|
||||
(list->vector (map (lambda (tok) (comp-tok tok nts)) (lexer input))))
|
||||
|
||||
(define (make-states nb-toks nb-confs)
|
||||
(let ((states (make-vector (+ nb-toks 1) #f)))
|
||||
(let loop ((i nb-toks))
|
||||
(if (>= i 0)
|
||||
(let ((v (make-vector (+ nb-confs 1) #f)))
|
||||
(vector-set! v 0 -1)
|
||||
(vector-set! states i v)
|
||||
(loop (- i 1)))
|
||||
states))))
|
||||
|
||||
(define (conf-set-get state conf)
|
||||
(vector-ref state (+ conf 1)))
|
||||
|
||||
(define (conf-set-get* state state-num conf)
|
||||
(let ((conf-set (conf-set-get state conf)))
|
||||
(if conf-set
|
||||
conf-set
|
||||
(let ((conf-set (make-vector (+ state-num 6) #f)))
|
||||
(vector-set! conf-set 1 -3) ; old elems tail (points to head)
|
||||
(vector-set! conf-set 2 -1) ; old elems head
|
||||
(vector-set! conf-set 3 -1) ; new elems tail (points to head)
|
||||
(vector-set! conf-set 4 -1) ; new elems head
|
||||
(vector-set! state (+ conf 1) conf-set)
|
||||
conf-set))))
|
||||
|
||||
(define (conf-set-merge-new! conf-set)
|
||||
(vector-set! conf-set
|
||||
(+ (vector-ref conf-set 1) 5)
|
||||
(vector-ref conf-set 4))
|
||||
(vector-set! conf-set 1 (vector-ref conf-set 3))
|
||||
(vector-set! conf-set 3 -1)
|
||||
(vector-set! conf-set 4 -1))
|
||||
|
||||
(define (conf-set-head conf-set)
|
||||
(vector-ref conf-set 2))
|
||||
|
||||
(define (conf-set-next conf-set i)
|
||||
(vector-ref conf-set (+ i 5)))
|
||||
|
||||
(define (conf-set-member? state conf i)
|
||||
(let ((conf-set (vector-ref state (+ conf 1))))
|
||||
(if conf-set
|
||||
(conf-set-next conf-set i)
|
||||
#f)))
|
||||
|
||||
(define (conf-set-adjoin state conf-set conf i)
|
||||
(let ((tail (vector-ref conf-set 3))) ; put new element at tail
|
||||
(vector-set! conf-set (+ i 5) -1)
|
||||
(vector-set! conf-set (+ tail 5) i)
|
||||
(vector-set! conf-set 3 i)
|
||||
(if (< tail 0)
|
||||
(begin
|
||||
(vector-set! conf-set 0 (vector-ref state 0))
|
||||
(vector-set! state 0 conf)))))
|
||||
|
||||
(define (conf-set-adjoin* states state-num l i)
|
||||
(let ((state (vector-ref states state-num)))
|
||||
(let loop ((l1 l))
|
||||
(if (pair? l1)
|
||||
(let* ((conf (car l1))
|
||||
(conf-set (conf-set-get* state state-num conf)))
|
||||
(if (not (conf-set-next conf-set i))
|
||||
(begin
|
||||
(conf-set-adjoin state conf-set conf i)
|
||||
(loop (cdr l1)))
|
||||
(loop (cdr l1))))))))
|
||||
|
||||
(define (conf-set-adjoin** states states* state-num conf i)
|
||||
(let ((state (vector-ref states state-num)))
|
||||
(if (conf-set-member? state conf i)
|
||||
(let* ((state* (vector-ref states* state-num))
|
||||
(conf-set* (conf-set-get* state* state-num conf)))
|
||||
(if (not (conf-set-next conf-set* i))
|
||||
(conf-set-adjoin state* conf-set* conf i))
|
||||
#t)
|
||||
#f)))
|
||||
|
||||
(define (conf-set-union state conf-set conf other-set)
|
||||
(let loop ((i (conf-set-head other-set)))
|
||||
(if (>= i 0)
|
||||
(if (not (conf-set-next conf-set i))
|
||||
(begin
|
||||
(conf-set-adjoin state conf-set conf i)
|
||||
(loop (conf-set-next other-set i)))
|
||||
(loop (conf-set-next other-set i))))))
|
||||
|
||||
(define (forw states state-num starters enders predictors steps nts)
|
||||
|
||||
(define (predict state state-num conf-set conf nt starters enders)
|
||||
|
||||
; add configurations which start the non-terminal `nt' to the
|
||||
; right of the dot
|
||||
|
||||
(let loop1 ((l (vector-ref starters nt)))
|
||||
(if (pair? l)
|
||||
(let* ((starter (car l))
|
||||
(starter-set (conf-set-get* state state-num starter)))
|
||||
(if (not (conf-set-next starter-set state-num))
|
||||
(begin
|
||||
(conf-set-adjoin state starter-set starter state-num)
|
||||
(loop1 (cdr l)))
|
||||
(loop1 (cdr l))))))
|
||||
|
||||
; check for possible completion of the non-terminal `nt' to the
|
||||
; right of the dot
|
||||
|
||||
(let loop2 ((l (vector-ref enders nt)))
|
||||
(if (pair? l)
|
||||
(let ((ender (car l)))
|
||||
(if (conf-set-member? state ender state-num)
|
||||
(let* ((next (+ conf 1))
|
||||
(next-set (conf-set-get* state state-num next)))
|
||||
(conf-set-union state next-set next conf-set)
|
||||
(loop2 (cdr l)))
|
||||
(loop2 (cdr l)))))))
|
||||
|
||||
(define (reduce states state state-num conf-set head preds)
|
||||
|
||||
; a non-terminal is now completed so check for reductions that
|
||||
; are now possible at the configurations `preds'
|
||||
|
||||
(let loop1 ((l preds))
|
||||
(if (pair? l)
|
||||
(let ((pred (car l)))
|
||||
(let loop2 ((i head))
|
||||
(if (>= i 0)
|
||||
(let ((pred-set (conf-set-get (vector-ref states i) pred)))
|
||||
(if pred-set
|
||||
(let* ((next (+ pred 1))
|
||||
(next-set (conf-set-get* state state-num next)))
|
||||
(conf-set-union state next-set next pred-set)))
|
||||
(loop2 (conf-set-next conf-set i)))
|
||||
(loop1 (cdr l))))))))
|
||||
|
||||
(let ((state (vector-ref states state-num))
|
||||
(nb-nts (vector-length nts)))
|
||||
(let loop ()
|
||||
(let ((conf (vector-ref state 0)))
|
||||
(if (>= conf 0)
|
||||
(let* ((step (vector-ref steps conf))
|
||||
(conf-set (vector-ref state (+ conf 1)))
|
||||
(head (vector-ref conf-set 4)))
|
||||
(vector-set! state 0 (vector-ref conf-set 0))
|
||||
(conf-set-merge-new! conf-set)
|
||||
(if (>= step 0)
|
||||
(predict state state-num conf-set conf step starters enders)
|
||||
(let ((preds (vector-ref predictors (+ step nb-nts))))
|
||||
(reduce states state state-num conf-set head preds)))
|
||||
(loop)))))))
|
||||
|
||||
(define (forward starters enders predictors steps nts toks)
|
||||
(let* ((nb-toks (vector-length toks))
|
||||
(nb-confs (vector-length steps))
|
||||
(states (make-states nb-toks nb-confs))
|
||||
(goal-starters (vector-ref starters 0)))
|
||||
(conf-set-adjoin* states 0 goal-starters 0) ; predict goal
|
||||
(forw states 0 starters enders predictors steps nts)
|
||||
(let loop ((i 0))
|
||||
(if (< i nb-toks)
|
||||
(let ((tok-nts (cdr (vector-ref toks i))))
|
||||
(conf-set-adjoin* states (+ i 1) tok-nts i) ; scan token
|
||||
(forw states (+ i 1) starters enders predictors steps nts)
|
||||
(loop (+ i 1)))))
|
||||
states))
|
||||
|
||||
(define (produce conf i j enders steps toks states states* nb-nts)
|
||||
(let ((prev (- conf 1)))
|
||||
(if (and (>= conf nb-nts) (>= (vector-ref steps prev) 0))
|
||||
(let loop1 ((l (vector-ref enders (vector-ref steps prev))))
|
||||
(if (pair? l)
|
||||
(let* ((ender (car l))
|
||||
(ender-set (conf-set-get (vector-ref states j)
|
||||
ender)))
|
||||
(if ender-set
|
||||
(let loop2 ((k (conf-set-head ender-set)))
|
||||
(if (>= k 0)
|
||||
(begin
|
||||
(and (>= k i)
|
||||
(conf-set-adjoin** states states* k prev i)
|
||||
(conf-set-adjoin** states states* j ender k))
|
||||
(loop2 (conf-set-next ender-set k)))
|
||||
(loop1 (cdr l))))
|
||||
(loop1 (cdr l)))))))))
|
||||
|
||||
(define (back states states* state-num enders steps nb-nts toks)
|
||||
(let ((state* (vector-ref states* state-num)))
|
||||
(let loop1 ()
|
||||
(let ((conf (vector-ref state* 0)))
|
||||
(if (>= conf 0)
|
||||
(let* ((conf-set (vector-ref state* (+ conf 1)))
|
||||
(head (vector-ref conf-set 4)))
|
||||
(vector-set! state* 0 (vector-ref conf-set 0))
|
||||
(conf-set-merge-new! conf-set)
|
||||
(let loop2 ((i head))
|
||||
(if (>= i 0)
|
||||
(begin
|
||||
(produce conf i state-num enders steps
|
||||
toks states states* nb-nts)
|
||||
(loop2 (conf-set-next conf-set i)))
|
||||
(loop1)))))))))
|
||||
|
||||
(define (backward states enders steps nts toks)
|
||||
(let* ((nb-toks (vector-length toks))
|
||||
(nb-confs (vector-length steps))
|
||||
(nb-nts (vector-length nts))
|
||||
(states* (make-states nb-toks nb-confs))
|
||||
(goal-enders (vector-ref enders 0)))
|
||||
(let loop1 ((l goal-enders))
|
||||
(if (pair? l)
|
||||
(let ((conf (car l)))
|
||||
(conf-set-adjoin** states states* nb-toks conf 0)
|
||||
(loop1 (cdr l)))))
|
||||
(let loop2 ((i nb-toks))
|
||||
(if (>= i 0)
|
||||
(begin
|
||||
(back states states* i enders steps nb-nts toks)
|
||||
(loop2 (- i 1)))))
|
||||
states*))
|
||||
|
||||
(define (parsed? nt i j nts enders states)
|
||||
(let ((nt* (ind nt nts)))
|
||||
(if nt*
|
||||
(let ((nb-nts (vector-length nts)))
|
||||
(let loop ((l (vector-ref enders nt*)))
|
||||
(if (pair? l)
|
||||
(let ((conf (car l)))
|
||||
(if (conf-set-member? (vector-ref states j) conf i)
|
||||
#t
|
||||
(loop (cdr l))))
|
||||
#f)))
|
||||
#f)))
|
||||
|
||||
(define (deriv-trees conf i j enders steps names toks states nb-nts)
|
||||
(let ((name (vector-ref names conf)))
|
||||
|
||||
(if name ; `conf' is at the start of a rule (either special or not)
|
||||
(if (< conf nb-nts)
|
||||
(list (list name (car (vector-ref toks i))))
|
||||
(list (list name)))
|
||||
|
||||
(let ((prev (- conf 1)))
|
||||
(let loop1 ((l1 (vector-ref enders (vector-ref steps prev)))
|
||||
(l2 '()))
|
||||
(if (pair? l1)
|
||||
(let* ((ender (car l1))
|
||||
(ender-set (conf-set-get (vector-ref states j)
|
||||
ender)))
|
||||
(if ender-set
|
||||
(let loop2 ((k (conf-set-head ender-set)) (l2 l2))
|
||||
(if (>= k 0)
|
||||
(if (and (>= k i)
|
||||
(conf-set-member? (vector-ref states k)
|
||||
prev i))
|
||||
(let ((prev-trees
|
||||
(deriv-trees prev i k enders steps names
|
||||
toks states nb-nts))
|
||||
(ender-trees
|
||||
(deriv-trees ender k j enders steps names
|
||||
toks states nb-nts)))
|
||||
(let loop3 ((l3 ender-trees) (l2 l2))
|
||||
(if (pair? l3)
|
||||
(let ((ender-tree (list (car l3))))
|
||||
(let loop4 ((l4 prev-trees) (l2 l2))
|
||||
(if (pair? l4)
|
||||
(loop4 (cdr l4)
|
||||
(cons (append (car l4)
|
||||
ender-tree)
|
||||
l2))
|
||||
(loop3 (cdr l3) l2))))
|
||||
(loop2 (conf-set-next ender-set k) l2))))
|
||||
(loop2 (conf-set-next ender-set k) l2))
|
||||
(loop1 (cdr l1) l2)))
|
||||
(loop1 (cdr l1) l2)))
|
||||
l2))))))
|
||||
|
||||
(define (deriv-trees* nt i j nts enders steps names toks states)
|
||||
(let ((nt* (ind nt nts)))
|
||||
(if nt*
|
||||
(let ((nb-nts (vector-length nts)))
|
||||
(let loop ((l (vector-ref enders nt*)) (trees '()))
|
||||
(if (pair? l)
|
||||
(let ((conf (car l)))
|
||||
(if (conf-set-member? (vector-ref states j) conf i)
|
||||
(loop (cdr l)
|
||||
(append (deriv-trees conf i j enders steps names
|
||||
toks states nb-nts)
|
||||
trees))
|
||||
(loop (cdr l) trees)))
|
||||
trees)))
|
||||
#f)))
|
||||
|
||||
(define (nb-deriv-trees conf i j enders steps toks states nb-nts)
|
||||
(let ((prev (- conf 1)))
|
||||
(if (or (< conf nb-nts) (< (vector-ref steps prev) 0))
|
||||
1
|
||||
(let loop1 ((l (vector-ref enders (vector-ref steps prev)))
|
||||
(n 0))
|
||||
(if (pair? l)
|
||||
(let* ((ender (car l))
|
||||
(ender-set (conf-set-get (vector-ref states j)
|
||||
ender)))
|
||||
(if ender-set
|
||||
(let loop2 ((k (conf-set-head ender-set)) (n n))
|
||||
(if (>= k 0)
|
||||
(if (and (>= k i)
|
||||
(conf-set-member? (vector-ref states k)
|
||||
prev i))
|
||||
(let ((nb-prev-trees
|
||||
(nb-deriv-trees prev i k enders steps
|
||||
toks states nb-nts))
|
||||
(nb-ender-trees
|
||||
(nb-deriv-trees ender k j enders steps
|
||||
toks states nb-nts)))
|
||||
(loop2 (conf-set-next ender-set k)
|
||||
(+ n (* nb-prev-trees nb-ender-trees))))
|
||||
(loop2 (conf-set-next ender-set k) n))
|
||||
(loop1 (cdr l) n)))
|
||||
(loop1 (cdr l) n)))
|
||||
n)))))
|
||||
|
||||
(define (nb-deriv-trees* nt i j nts enders steps toks states)
|
||||
(let ((nt* (ind nt nts)))
|
||||
(if nt*
|
||||
(let ((nb-nts (vector-length nts)))
|
||||
(let loop ((l (vector-ref enders nt*)) (nb-trees 0))
|
||||
(if (pair? l)
|
||||
(let ((conf (car l)))
|
||||
(if (conf-set-member? (vector-ref states j) conf i)
|
||||
(loop (cdr l)
|
||||
(+ (nb-deriv-trees conf i j enders steps
|
||||
toks states nb-nts)
|
||||
nb-trees))
|
||||
(loop (cdr l) nb-trees)))
|
||||
nb-trees)))
|
||||
#f)))
|
||||
|
||||
(let* ((lexer (vector-ref parser-descr 0))
|
||||
(nts (vector-ref parser-descr 1))
|
||||
(starters (vector-ref parser-descr 2))
|
||||
(enders (vector-ref parser-descr 3))
|
||||
(predictors (vector-ref parser-descr 4))
|
||||
(steps (vector-ref parser-descr 5))
|
||||
(names (vector-ref parser-descr 6))
|
||||
(toks (input->tokens input lexer nts)))
|
||||
|
||||
(vector nts
|
||||
starters
|
||||
enders
|
||||
predictors
|
||||
steps
|
||||
names
|
||||
toks
|
||||
(backward (forward starters enders predictors steps nts toks)
|
||||
enders steps nts toks)
|
||||
parsed?
|
||||
deriv-trees*
|
||||
nb-deriv-trees*))))))
|
||||
|
||||
(define (parse->parsed? parse nt i j)
|
||||
(let* ((nts (vector-ref parse 0))
|
||||
(enders (vector-ref parse 2))
|
||||
(states (vector-ref parse 7))
|
||||
(parsed? (vector-ref parse 8)))
|
||||
(parsed? nt i j nts enders states)))
|
||||
|
||||
(define (parse->trees parse nt i j)
|
||||
(let* ((nts (vector-ref parse 0))
|
||||
(enders (vector-ref parse 2))
|
||||
(steps (vector-ref parse 4))
|
||||
(names (vector-ref parse 5))
|
||||
(toks (vector-ref parse 6))
|
||||
(states (vector-ref parse 7))
|
||||
(deriv-trees* (vector-ref parse 9)))
|
||||
(deriv-trees* nt i j nts enders steps names toks states)))
|
||||
|
||||
(define (parse->nb-trees parse nt i j)
|
||||
(let* ((nts (vector-ref parse 0))
|
||||
(enders (vector-ref parse 2))
|
||||
(steps (vector-ref parse 4))
|
||||
(toks (vector-ref parse 6))
|
||||
(states (vector-ref parse 7))
|
||||
(nb-deriv-trees* (vector-ref parse 10)))
|
||||
(nb-deriv-trees* nt i j nts enders steps toks states)))
|
||||
|
||||
(define (test k)
|
||||
(let ((p (make-parser '( (s (a) (s s)) )
|
||||
(lambda (l) (map (lambda (x) (list x x)) l)))))
|
||||
(let ((x (p (vector->list (make-vector k 'a)))))
|
||||
(length (parse->trees x 's 0 k)))))
|
||||
|
||||
(time (test 12))
|
117
benchmarks/gabriel/fft.sch
Normal file
117
benchmarks/gabriel/fft.sch
Normal file
|
@ -0,0 +1,117 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: fft.cl
|
||||
; Description: FFT benchmark from the Gabriel tests.
|
||||
; Author: Harry Barrow
|
||||
; Created: 8-Apr-85
|
||||
; Modified: 6-May-85 09:29:22 (Bob Shaw)
|
||||
; 11-Aug-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
(define pi (atan 0 -1))
|
||||
|
||||
;;; FFT -- This is an FFT benchmark written by Harry Barrow.
|
||||
;;; It tests a variety of floating point operations,
|
||||
;;; including array references.
|
||||
|
||||
(define *re* (make-vector 1025 0.0))
|
||||
|
||||
(define *im* (make-vector 1025 0.0))
|
||||
|
||||
(define (fft areal aimag)
|
||||
(let ((ar 0)
|
||||
(ai 0)
|
||||
(i 0)
|
||||
(j 0)
|
||||
(k 0)
|
||||
(m 0)
|
||||
(n 0)
|
||||
(le 0)
|
||||
(le1 0)
|
||||
(ip 0)
|
||||
(nv2 0)
|
||||
(nm1 0)
|
||||
(ur 0)
|
||||
(ui 0)
|
||||
(wr 0)
|
||||
(wi 0)
|
||||
(tr 0)
|
||||
(ti 0))
|
||||
;; initialize
|
||||
(set! ar areal)
|
||||
(set! ai aimag)
|
||||
(set! n (vector-length ar))
|
||||
(set! n (- n 1))
|
||||
(set! nv2 (quotient n 2))
|
||||
(set! nm1 (- n 1))
|
||||
(set! m 0) ;compute m = log(n)
|
||||
(set! i 1)
|
||||
(let loop ()
|
||||
(if (< i n)
|
||||
(begin (set! m (+ m 1))
|
||||
(set! i (+ i i))
|
||||
(loop))))
|
||||
(cond ((not (= n (expt 2 m)))
|
||||
(error "array size not a power of two.")))
|
||||
;; interchange elements in bit-reversed order
|
||||
(set! j 1)
|
||||
(set! i 1)
|
||||
(let l3 ()
|
||||
(cond ((< i j)
|
||||
(set! tr (vector-ref ar j))
|
||||
(set! ti (vector-ref ai j))
|
||||
(vector-set! ar j (vector-ref ar i))
|
||||
(vector-set! ai j (vector-ref ai i))
|
||||
(vector-set! ar i tr)
|
||||
(vector-set! ai i ti)))
|
||||
(set! k nv2)
|
||||
(let l6 ()
|
||||
(cond ((< k j)
|
||||
(set! j (- j k))
|
||||
(set! k (/ k 2))
|
||||
(l6))))
|
||||
(set! j (+ j k))
|
||||
(set! i (+ i 1))
|
||||
(cond ((< i n)
|
||||
(l3))))
|
||||
(do ((l 1 (+ l 1))) ;loop thru stages (syntax converted
|
||||
((> l m)) ; from old MACLISP style \bs)
|
||||
(set! le (expt 2 l))
|
||||
(set! le1 (quotient le 2))
|
||||
(set! ur 1.0)
|
||||
(set! ui 0.)
|
||||
(set! wr (cos (/ pi le1)))
|
||||
(set! wi (sin (/ pi le1)))
|
||||
;; loop thru butterflies
|
||||
(do ((j 1 (+ j 1)))
|
||||
((> j le1))
|
||||
;; do a butterfly
|
||||
(do ((i j (+ i le)))
|
||||
((> i n))
|
||||
(set! ip (+ i le1))
|
||||
(set! tr (- (* (vector-ref ar ip) ur)
|
||||
(* (vector-ref ai ip) ui)))
|
||||
(set! ti (+ (* (vector-ref ar ip) ui)
|
||||
(* (vector-ref ai ip) ur)))
|
||||
(vector-set! ar ip (- (vector-ref ar i) tr))
|
||||
(vector-set! ai ip (- (vector-ref ai i) ti))
|
||||
(vector-set! ar i (+ (vector-ref ar i) tr))
|
||||
(vector-set! ai i (+ (vector-ref ai i) ti))))
|
||||
(set! tr (- (* ur wr) (* ui wi)))
|
||||
(set! ti (+ (* ur wi) (* ui wr)))
|
||||
(set! ur tr)
|
||||
(set! ui ti))
|
||||
#t))
|
||||
|
||||
;;; the timer which does 10 calls on fft
|
||||
|
||||
(define (fft-bench)
|
||||
(do ((ntimes 0 (+ ntimes 1)))
|
||||
((= ntimes 1000))
|
||||
(fft *re* *im*)))
|
||||
|
||||
;;; call: (fft-bench)
|
||||
|
||||
(time (fft-bench))
|
||||
|
645
benchmarks/gabriel/graphs.sch
Normal file
645
benchmarks/gabriel/graphs.sch
Normal file
|
@ -0,0 +1,645 @@
|
|||
; Modified 2 March 1997 by Will Clinger to add graphs-benchmark
|
||||
; and to expand the four macros below.
|
||||
; Modified 11 June 1997 by Will Clinger to eliminate assertions
|
||||
; and to replace a use of "recur" with a named let.
|
||||
;
|
||||
; Performance note: (graphs-benchmark 7) allocates
|
||||
; 34509143 pairs
|
||||
; 389625 vectors with 2551590 elements
|
||||
; 56653504 closures (not counting top level and known procedures)
|
||||
|
||||
; End of new code.
|
||||
|
||||
;;; ==== std.ss ====
|
||||
|
||||
; (define-syntax assert
|
||||
; (syntax-rules ()
|
||||
; ((assert test info-rest ...)
|
||||
; #f)))
|
||||
;
|
||||
; (define-syntax deny
|
||||
; (syntax-rules ()
|
||||
; ((deny test info-rest ...)
|
||||
; #f)))
|
||||
;
|
||||
; (define-syntax when
|
||||
; (syntax-rules ()
|
||||
; ((when test e-first e-rest ...)
|
||||
; (if test
|
||||
; (begin e-first
|
||||
; e-rest ...)))))
|
||||
;
|
||||
; (define-syntax unless
|
||||
; (syntax-rules ()
|
||||
; ((unless test e-first e-rest ...)
|
||||
; (if (not test)
|
||||
; (begin e-first
|
||||
; e-rest ...)))))
|
||||
|
||||
;;; ==== util.ss ====
|
||||
|
||||
|
||||
; Fold over list elements, associating to the left.
|
||||
(define fold
|
||||
(lambda (lst folder state)
|
||||
'(assert (list? lst)
|
||||
lst)
|
||||
'(assert (procedure? folder)
|
||||
folder)
|
||||
(do ((lst lst
|
||||
(cdr lst))
|
||||
(state state
|
||||
(folder (car lst)
|
||||
state)))
|
||||
((null? lst)
|
||||
state))))
|
||||
|
||||
; Given the size of a vector and a procedure which
|
||||
; sends indices to desired vector elements, create
|
||||
; and return the vector.
|
||||
(define proc->vector
|
||||
(lambda (size f)
|
||||
'(assert (and (integer? size)
|
||||
(exact? size)
|
||||
(>= size 0))
|
||||
size)
|
||||
'(assert (procedure? f)
|
||||
f)
|
||||
(if (zero? size)
|
||||
(vector)
|
||||
(let ((x (make-vector size (f 0))))
|
||||
(let loop ((i 1))
|
||||
(if (< i size) (begin ; [wdc - was when]
|
||||
(vector-set! x i (f i))
|
||||
(loop (+ i 1)))))
|
||||
x))))
|
||||
|
||||
(define vector-fold
|
||||
(lambda (vec folder state)
|
||||
'(assert (vector? vec)
|
||||
vec)
|
||||
'(assert (procedure? folder)
|
||||
folder)
|
||||
(let ((len
|
||||
(vector-length vec)))
|
||||
(do ((i 0
|
||||
(+ i 1))
|
||||
(state state
|
||||
(folder (vector-ref vec i)
|
||||
state)))
|
||||
((= i len)
|
||||
state)))))
|
||||
|
||||
(define vec-map
|
||||
(lambda (vec proc)
|
||||
(proc->vector (vector-length vec)
|
||||
(lambda (i)
|
||||
(proc (vector-ref vec i))))))
|
||||
|
||||
; Given limit, return the list 0, 1, ..., limit-1.
|
||||
(define giota
|
||||
(lambda (limit)
|
||||
'(assert (and (integer? limit)
|
||||
(exact? limit)
|
||||
(>= limit 0))
|
||||
limit)
|
||||
(let _-*-
|
||||
((limit
|
||||
limit)
|
||||
(res
|
||||
'()))
|
||||
(if (zero? limit)
|
||||
res
|
||||
(let ((limit
|
||||
(- limit 1)))
|
||||
(_-*- limit
|
||||
(cons limit res)))))))
|
||||
|
||||
; Fold over the integers [0, limit).
|
||||
(define gnatural-fold
|
||||
(lambda (limit folder state)
|
||||
'(assert (and (integer? limit)
|
||||
(exact? limit)
|
||||
(>= limit 0))
|
||||
limit)
|
||||
'(assert (procedure? folder)
|
||||
folder)
|
||||
(do ((i 0
|
||||
(+ i 1))
|
||||
(state state
|
||||
(folder i state)))
|
||||
((= i limit)
|
||||
state))))
|
||||
|
||||
; Iterate over the integers [0, limit).
|
||||
(define gnatural-for-each
|
||||
(lambda (limit proc!)
|
||||
'(assert (and (integer? limit)
|
||||
(exact? limit)
|
||||
(>= limit 0))
|
||||
limit)
|
||||
'(assert (procedure? proc!)
|
||||
proc!)
|
||||
(do ((i 0
|
||||
(+ i 1)))
|
||||
((= i limit))
|
||||
(proc! i))))
|
||||
|
||||
(define natural-for-all?
|
||||
(lambda (limit ok?)
|
||||
'(assert (and (integer? limit)
|
||||
(exact? limit)
|
||||
(>= limit 0))
|
||||
limit)
|
||||
'(assert (procedure? ok?)
|
||||
ok?)
|
||||
(let _-*-
|
||||
((i 0))
|
||||
(or (= i limit)
|
||||
(and (ok? i)
|
||||
(_-*- (+ i 1)))))))
|
||||
|
||||
(define natural-there-exists?
|
||||
(lambda (limit ok?)
|
||||
'(assert (and (integer? limit)
|
||||
(exact? limit)
|
||||
(>= limit 0))
|
||||
limit)
|
||||
'(assert (procedure? ok?)
|
||||
ok?)
|
||||
(let _-*-
|
||||
((i 0))
|
||||
(and (not (= i limit))
|
||||
(or (ok? i)
|
||||
(_-*- (+ i 1)))))))
|
||||
|
||||
(define there-exists?
|
||||
(lambda (lst ok?)
|
||||
'(assert (list? lst)
|
||||
lst)
|
||||
'(assert (procedure? ok?)
|
||||
ok?)
|
||||
(let _-*-
|
||||
((lst lst))
|
||||
(and (not (null? lst))
|
||||
(or (ok? (car lst))
|
||||
(_-*- (cdr lst)))))))
|
||||
|
||||
|
||||
;;; ==== ptfold.ss ====
|
||||
|
||||
|
||||
; Fold over the tree of permutations of a universe.
|
||||
; Each branch (from the root) is a permutation of universe.
|
||||
; Each node at depth d corresponds to all permutations which pick the
|
||||
; elements spelled out on the branch from the root to that node as
|
||||
; the first d elements.
|
||||
; Their are two components to the state:
|
||||
; The b-state is only a function of the branch from the root.
|
||||
; The t-state is a function of all nodes seen so far.
|
||||
; At each node, b-folder is called via
|
||||
; (b-folder elem b-state t-state deeper accross)
|
||||
; where elem is the next element of the universe picked.
|
||||
; If b-folder can determine the result of the total tree fold at this stage,
|
||||
; it should simply return the result.
|
||||
; If b-folder can determine the result of folding over the sub-tree
|
||||
; rooted at the resulting node, it should call accross via
|
||||
; (accross new-t-state)
|
||||
; where new-t-state is that result.
|
||||
; Otherwise, b-folder should call deeper via
|
||||
; (deeper new-b-state new-t-state)
|
||||
; where new-b-state is the b-state for the new node and new-t-state is
|
||||
; the new folded t-state.
|
||||
; At the leaves of the tree, t-folder is called via
|
||||
; (t-folder b-state t-state accross)
|
||||
; If t-folder can determine the result of the total tree fold at this stage,
|
||||
; it should simply return that result.
|
||||
; If not, it should call accross via
|
||||
; (accross new-t-state)
|
||||
; Note, fold-over-perm-tree always calls b-folder in depth-first order.
|
||||
; I.e., when b-folder is called at depth d, the branch leading to that
|
||||
; node is the most recent calls to b-folder at all the depths less than d.
|
||||
; This is a gross efficiency hack so that b-folder can use mutation to
|
||||
; keep the current branch.
|
||||
(define fold-over-perm-tree
|
||||
(lambda (universe b-folder b-state t-folder t-state)
|
||||
'(assert (list? universe)
|
||||
universe)
|
||||
'(assert (procedure? b-folder)
|
||||
b-folder)
|
||||
'(assert (procedure? t-folder)
|
||||
t-folder)
|
||||
(let _-*-
|
||||
((universe
|
||||
universe)
|
||||
(b-state
|
||||
b-state)
|
||||
(t-state
|
||||
t-state)
|
||||
(accross
|
||||
(lambda (final-t-state)
|
||||
final-t-state)))
|
||||
(if (null? universe)
|
||||
(t-folder b-state t-state accross)
|
||||
(let _-**-
|
||||
((in
|
||||
universe)
|
||||
(out
|
||||
'())
|
||||
(t-state
|
||||
t-state))
|
||||
(let* ((first
|
||||
(car in))
|
||||
(rest
|
||||
(cdr in))
|
||||
(accross
|
||||
(if (null? rest)
|
||||
accross
|
||||
(lambda (new-t-state)
|
||||
(_-**- rest
|
||||
(cons first out)
|
||||
new-t-state)))))
|
||||
(b-folder first
|
||||
b-state
|
||||
t-state
|
||||
(lambda (new-b-state new-t-state)
|
||||
(_-*- (fold out cons rest)
|
||||
new-b-state
|
||||
new-t-state
|
||||
accross))
|
||||
accross)))))))
|
||||
|
||||
|
||||
;;; ==== minimal.ss ====
|
||||
|
||||
|
||||
; A directed graph is stored as a connection matrix (vector-of-vectors)
|
||||
; where the first index is the `from' vertex and the second is the `to'
|
||||
; vertex. Each entry is a bool indicating if the edge exists.
|
||||
; The diagonal of the matrix is never examined.
|
||||
; Make-minimal? returns a procedure which tests if a labelling
|
||||
; of the vertices is such that the matrix is minimal.
|
||||
; If it is, then the procedure returns the result of folding over
|
||||
; the elements of the automoriphism group. If not, it returns #f.
|
||||
; The folding is done by calling folder via
|
||||
; (folder perm state accross)
|
||||
; If the folder wants to continue, it should call accross via
|
||||
; (accross new-state)
|
||||
; If it just wants the entire minimal? procedure to return something,
|
||||
; it should return that.
|
||||
; The ordering used is lexicographic (with #t > #f) and entries
|
||||
; are examined in the following order:
|
||||
; 1->0, 0->1
|
||||
;
|
||||
; 2->0, 0->2
|
||||
; 2->1, 1->2
|
||||
;
|
||||
; 3->0, 0->3
|
||||
; 3->1, 1->3
|
||||
; 3->2, 2->3
|
||||
; ...
|
||||
(define make-minimal?
|
||||
(lambda (max-size)
|
||||
'(assert (and (integer? max-size)
|
||||
(exact? max-size)
|
||||
(>= max-size 0))
|
||||
max-size)
|
||||
(let ((iotas
|
||||
(proc->vector (+ max-size 1)
|
||||
giota))
|
||||
(perm
|
||||
(make-vector max-size 0)))
|
||||
(lambda (size graph folder state)
|
||||
'(assert (and (integer? size)
|
||||
(exact? size)
|
||||
(<= 0 size max-size))
|
||||
size
|
||||
max-size)
|
||||
'(assert (vector? graph)
|
||||
graph)
|
||||
'(assert (procedure? folder)
|
||||
folder)
|
||||
(fold-over-perm-tree (vector-ref iotas size)
|
||||
(lambda (perm-x x state deeper accross)
|
||||
(case (cmp-next-vertex graph perm x perm-x)
|
||||
((less)
|
||||
#f)
|
||||
((equal)
|
||||
(vector-set! perm x perm-x)
|
||||
(deeper (+ x 1)
|
||||
state))
|
||||
((more)
|
||||
(accross state))
|
||||
;(else
|
||||
; (assert #f))
|
||||
))
|
||||
0
|
||||
(lambda (leaf-depth state accross)
|
||||
'(assert (eqv? leaf-depth size)
|
||||
leaf-depth
|
||||
size)
|
||||
(folder perm state accross))
|
||||
state)))))
|
||||
|
||||
; Given a graph, a partial permutation vector, the next input and the next
|
||||
; output, return 'less, 'equal or 'more depending on the lexicographic
|
||||
; comparison between the permuted and un-permuted graph.
|
||||
(define cmp-next-vertex
|
||||
(lambda (graph perm x perm-x)
|
||||
(let ((from-x
|
||||
(vector-ref graph x))
|
||||
(from-perm-x
|
||||
(vector-ref graph perm-x)))
|
||||
(let _-*-
|
||||
((y
|
||||
0))
|
||||
(if (= x y)
|
||||
'equal
|
||||
(let ((x->y?
|
||||
(vector-ref from-x y))
|
||||
(perm-y
|
||||
(vector-ref perm y)))
|
||||
(cond ((eq? x->y?
|
||||
(vector-ref from-perm-x perm-y))
|
||||
(let ((y->x?
|
||||
(vector-ref (vector-ref graph y)
|
||||
x)))
|
||||
(cond ((eq? y->x?
|
||||
(vector-ref (vector-ref graph perm-y)
|
||||
perm-x))
|
||||
(_-*- (+ y 1)))
|
||||
(y->x?
|
||||
'less)
|
||||
(else
|
||||
'more))))
|
||||
(x->y?
|
||||
'less)
|
||||
(else
|
||||
'more))))))))
|
||||
|
||||
|
||||
;;; ==== rdg.ss ====
|
||||
|
||||
|
||||
; Fold over rooted directed graphs with bounded out-degree.
|
||||
; Size is the number of vertices (including the root). Max-out is the
|
||||
; maximum out-degree for any vertex. Folder is called via
|
||||
; (folder edges state)
|
||||
; where edges is a list of length size. The ith element of the list is
|
||||
; a list of the vertices j for which there is an edge from i to j.
|
||||
; The last vertex is the root.
|
||||
(define fold-over-rdg
|
||||
(lambda (size max-out folder state)
|
||||
'(assert (and (exact? size)
|
||||
(integer? size)
|
||||
(> size 0))
|
||||
size)
|
||||
'(assert (and (exact? max-out)
|
||||
(integer? max-out)
|
||||
(>= max-out 0))
|
||||
max-out)
|
||||
'(assert (procedure? folder)
|
||||
folder)
|
||||
(let* ((root
|
||||
(- size 1))
|
||||
(edge?
|
||||
(proc->vector size
|
||||
(lambda (from)
|
||||
(make-vector size #f))))
|
||||
(edges
|
||||
(make-vector size '()))
|
||||
(out-degrees
|
||||
(make-vector size 0))
|
||||
(minimal-folder
|
||||
(make-minimal? root))
|
||||
(non-root-minimal?
|
||||
(let ((cont
|
||||
(lambda (perm state accross)
|
||||
'(assert (eq? state #t)
|
||||
state)
|
||||
(accross #t))))
|
||||
(lambda (size)
|
||||
(minimal-folder size
|
||||
edge?
|
||||
cont
|
||||
#t))))
|
||||
(root-minimal?
|
||||
(let ((cont
|
||||
(lambda (perm state accross)
|
||||
'(assert (eq? state #t)
|
||||
state)
|
||||
(case (cmp-next-vertex edge? perm root root)
|
||||
((less)
|
||||
#f)
|
||||
((equal more)
|
||||
(accross #t))
|
||||
;(else
|
||||
; (assert #f))
|
||||
))))
|
||||
(lambda ()
|
||||
(minimal-folder root
|
||||
edge?
|
||||
cont
|
||||
#t)))))
|
||||
(let _-*-
|
||||
((vertex
|
||||
0)
|
||||
(state
|
||||
state))
|
||||
(cond ((not (non-root-minimal? vertex))
|
||||
state)
|
||||
((= vertex root)
|
||||
'(assert
|
||||
(begin
|
||||
(gnatural-for-each root
|
||||
(lambda (v)
|
||||
'(assert (= (vector-ref out-degrees v)
|
||||
(length (vector-ref edges v)))
|
||||
v
|
||||
(vector-ref out-degrees v)
|
||||
(vector-ref edges v))))
|
||||
#t))
|
||||
(let ((reach?
|
||||
(make-reach? root edges))
|
||||
(from-root
|
||||
(vector-ref edge? root)))
|
||||
(let _-*-
|
||||
((v
|
||||
0)
|
||||
(outs
|
||||
0)
|
||||
(efr
|
||||
'())
|
||||
(efrr
|
||||
'())
|
||||
(state
|
||||
state))
|
||||
(cond ((not (or (= v root)
|
||||
(= outs max-out)))
|
||||
(vector-set! from-root v #t)
|
||||
(let ((state
|
||||
(_-*- (+ v 1)
|
||||
(+ outs 1)
|
||||
(cons v efr)
|
||||
(cons (vector-ref reach? v)
|
||||
efrr)
|
||||
state)))
|
||||
(vector-set! from-root v #f)
|
||||
(_-*- (+ v 1)
|
||||
outs
|
||||
efr
|
||||
efrr
|
||||
state)))
|
||||
((and (natural-for-all? root
|
||||
(lambda (v)
|
||||
(there-exists? efrr
|
||||
(lambda (r)
|
||||
(vector-ref r v)))))
|
||||
(root-minimal?))
|
||||
(vector-set! edges root efr)
|
||||
(folder
|
||||
(proc->vector size
|
||||
(lambda (i)
|
||||
(vector-ref edges i)))
|
||||
state))
|
||||
(else
|
||||
state)))))
|
||||
(else
|
||||
(let ((from-vertex
|
||||
(vector-ref edge? vertex)))
|
||||
(let _-**-
|
||||
((sv
|
||||
0)
|
||||
(outs
|
||||
0)
|
||||
(state
|
||||
state))
|
||||
(if (= sv vertex)
|
||||
(begin
|
||||
(vector-set! out-degrees vertex outs)
|
||||
(_-*- (+ vertex 1)
|
||||
state))
|
||||
(let* ((state
|
||||
; no sv->vertex, no vertex->sv
|
||||
(_-**- (+ sv 1)
|
||||
outs
|
||||
state))
|
||||
(from-sv
|
||||
(vector-ref edge? sv))
|
||||
(sv-out
|
||||
(vector-ref out-degrees sv))
|
||||
(state
|
||||
(if (= sv-out max-out)
|
||||
state
|
||||
(begin
|
||||
(vector-set! edges
|
||||
sv
|
||||
(cons vertex
|
||||
(vector-ref edges sv)))
|
||||
(vector-set! from-sv vertex #t)
|
||||
(vector-set! out-degrees sv (+ sv-out 1))
|
||||
(let* ((state
|
||||
; sv->vertex, no vertex->sv
|
||||
(_-**- (+ sv 1)
|
||||
outs
|
||||
state))
|
||||
(state
|
||||
(if (= outs max-out)
|
||||
state
|
||||
(begin
|
||||
(vector-set! from-vertex sv #t)
|
||||
(vector-set! edges
|
||||
vertex
|
||||
(cons sv
|
||||
(vector-ref edges vertex)))
|
||||
(let ((state
|
||||
; sv->vertex, vertex->sv
|
||||
(_-**- (+ sv 1)
|
||||
(+ outs 1)
|
||||
state)))
|
||||
(vector-set! edges
|
||||
vertex
|
||||
(cdr (vector-ref edges vertex)))
|
||||
(vector-set! from-vertex sv #f)
|
||||
state)))))
|
||||
(vector-set! out-degrees sv sv-out)
|
||||
(vector-set! from-sv vertex #f)
|
||||
(vector-set! edges
|
||||
sv
|
||||
(cdr (vector-ref edges sv)))
|
||||
state)))))
|
||||
(if (= outs max-out)
|
||||
state
|
||||
(begin
|
||||
(vector-set! edges
|
||||
vertex
|
||||
(cons sv
|
||||
(vector-ref edges vertex)))
|
||||
(vector-set! from-vertex sv #t)
|
||||
(let ((state
|
||||
; no sv->vertex, vertex->sv
|
||||
(_-**- (+ sv 1)
|
||||
(+ outs 1)
|
||||
state)))
|
||||
(vector-set! from-vertex sv #f)
|
||||
(vector-set! edges
|
||||
vertex
|
||||
(cdr (vector-ref edges vertex)))
|
||||
state)))))))))))))
|
||||
|
||||
; Given a vector which maps vertex to out-going-edge list,
|
||||
; return a vector which gives reachability.
|
||||
(define make-reach?
|
||||
(lambda (size vertex->out)
|
||||
(let ((res
|
||||
(proc->vector size
|
||||
(lambda (v)
|
||||
(let ((from-v
|
||||
(make-vector size #f)))
|
||||
(vector-set! from-v v #t)
|
||||
(for-each
|
||||
(lambda (x)
|
||||
(vector-set! from-v x #t))
|
||||
(vector-ref vertex->out v))
|
||||
from-v)))))
|
||||
(gnatural-for-each size
|
||||
(lambda (m)
|
||||
(let ((from-m
|
||||
(vector-ref res m)))
|
||||
(gnatural-for-each size
|
||||
(lambda (f)
|
||||
(let ((from-f
|
||||
(vector-ref res f)))
|
||||
(if (vector-ref from-f m); [wdc - was when]
|
||||
(begin
|
||||
(gnatural-for-each size
|
||||
(lambda (t)
|
||||
(if (vector-ref from-m t)
|
||||
(begin ; [wdc - was when]
|
||||
(vector-set! from-f t #t)))))))))))))
|
||||
res)))
|
||||
|
||||
|
||||
;;; ==== test input ====
|
||||
|
||||
; Produces all directed graphs with N vertices, distinguished root,
|
||||
; and out-degree bounded by 2, upto isomorphism (there are 44).
|
||||
|
||||
;(define go
|
||||
; (let ((N 7))
|
||||
; (fold-over-rdg N
|
||||
; 2
|
||||
; cons
|
||||
; '())))
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(length
|
||||
(let loop ((n 3) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1)
|
||||
(fold-over-rdg (if input 6 0)
|
||||
2
|
||||
cons
|
||||
'())))))))
|
6489
benchmarks/gabriel/kanren.sch
Normal file
6489
benchmarks/gabriel/kanren.sch
Normal file
File diff suppressed because it is too large
Load diff
215
benchmarks/gabriel/lattice.sch
Normal file
215
benchmarks/gabriel/lattice.sch
Normal file
|
@ -0,0 +1,215 @@
|
|||
;;; LATTICE -- Obtained from Andrew Wright.
|
||||
|
||||
; Given a comparison routine that returns one of
|
||||
; less
|
||||
; more
|
||||
; equal
|
||||
; uncomparable
|
||||
; return a new comparison routine that applies to sequences.
|
||||
(define lexico
|
||||
(lambda (base)
|
||||
(define lex-fixed
|
||||
(lambda (fixed lhs rhs)
|
||||
(define check
|
||||
(lambda (lhs rhs)
|
||||
(if (null? lhs)
|
||||
fixed
|
||||
(let ((probe
|
||||
(base (car lhs)
|
||||
(car rhs))))
|
||||
(if (or (eq? probe 'equal)
|
||||
(eq? probe fixed))
|
||||
(check (cdr lhs)
|
||||
(cdr rhs))
|
||||
'uncomparable)))))
|
||||
(check lhs rhs)))
|
||||
(define lex-first
|
||||
(lambda (lhs rhs)
|
||||
(if (null? lhs)
|
||||
'equal
|
||||
(let ((probe
|
||||
(base (car lhs)
|
||||
(car rhs))))
|
||||
(case probe
|
||||
((less more)
|
||||
(lex-fixed probe
|
||||
(cdr lhs)
|
||||
(cdr rhs)))
|
||||
((equal)
|
||||
(lex-first (cdr lhs)
|
||||
(cdr rhs)))
|
||||
((uncomparable)
|
||||
'uncomparable))))))
|
||||
lex-first))
|
||||
|
||||
(define (make-lattice elem-list cmp-func)
|
||||
(cons elem-list cmp-func))
|
||||
|
||||
(define lattice->elements car)
|
||||
|
||||
(define lattice->cmp cdr)
|
||||
|
||||
; Select elements of a list which pass some test.
|
||||
(define zulu-select
|
||||
(lambda (test lst)
|
||||
(define select-a
|
||||
(lambda (ac lst)
|
||||
(if (null? lst)
|
||||
(reverse! ac)
|
||||
(select-a
|
||||
(let ((head (car lst)))
|
||||
(if (test head)
|
||||
(cons head ac)
|
||||
ac))
|
||||
(cdr lst)))))
|
||||
(select-a '() lst)))
|
||||
|
||||
(define reverse!
|
||||
(letrec ((rotate
|
||||
(lambda (fo fum)
|
||||
(let ((next (cdr fo)))
|
||||
(set-cdr! fo fum)
|
||||
(if (null? next)
|
||||
fo
|
||||
(rotate next fo))))))
|
||||
(lambda (lst)
|
||||
(if (null? lst)
|
||||
'()
|
||||
(rotate lst '())))))
|
||||
|
||||
; Select elements of a list which pass some test and map a function
|
||||
; over the result. Note, only efficiency prevents this from being the
|
||||
; composition of select and map.
|
||||
(define select-map
|
||||
(lambda (test func lst)
|
||||
(define select-a
|
||||
(lambda (ac lst)
|
||||
(if (null? lst)
|
||||
(reverse! ac)
|
||||
(select-a
|
||||
(let ((head (car lst)))
|
||||
(if (test head)
|
||||
(cons (func head)
|
||||
ac)
|
||||
ac))
|
||||
(cdr lst)))))
|
||||
(select-a '() lst)))
|
||||
|
||||
|
||||
|
||||
; This version of map-and tail-recurses on the last test.
|
||||
(define map-and
|
||||
(lambda (proc lst)
|
||||
(if (null? lst)
|
||||
#t
|
||||
(letrec ((drudge
|
||||
(lambda (lst)
|
||||
(let ((rest (cdr lst)))
|
||||
(if (null? rest)
|
||||
(proc (car lst))
|
||||
(and (proc (car lst))
|
||||
(drudge rest)))))))
|
||||
(drudge lst)))))
|
||||
|
||||
(define (maps-1 source target pas new)
|
||||
(let ((scmp (lattice->cmp source))
|
||||
(tcmp (lattice->cmp target)))
|
||||
(let ((less
|
||||
(select-map
|
||||
(lambda (p)
|
||||
(eq? 'less
|
||||
(scmp (car p) new)))
|
||||
cdr
|
||||
pas))
|
||||
(more
|
||||
(select-map
|
||||
(lambda (p)
|
||||
(eq? 'more
|
||||
(scmp (car p) new)))
|
||||
cdr
|
||||
pas)))
|
||||
(zulu-select
|
||||
(lambda (t)
|
||||
(and
|
||||
(map-and
|
||||
(lambda (t2)
|
||||
(memq (tcmp t2 t) '(less equal)))
|
||||
less)
|
||||
(map-and
|
||||
(lambda (t2)
|
||||
(memq (tcmp t2 t) '(more equal)))
|
||||
more)))
|
||||
(lattice->elements target)))))
|
||||
|
||||
(define (maps-rest source target pas rest to-1 to-collect)
|
||||
(if (null? rest)
|
||||
(to-1 pas)
|
||||
(let ((next (car rest))
|
||||
(rest (cdr rest)))
|
||||
(to-collect
|
||||
(map
|
||||
(lambda (x)
|
||||
(maps-rest source target
|
||||
(cons
|
||||
(cons next x)
|
||||
pas)
|
||||
rest
|
||||
to-1
|
||||
to-collect))
|
||||
(maps-1 source target pas next))))))
|
||||
|
||||
(define (maps source target)
|
||||
(make-lattice
|
||||
(maps-rest source
|
||||
target
|
||||
'()
|
||||
(lattice->elements source)
|
||||
(lambda (x) (list (map cdr x)))
|
||||
(lambda (x) (apply append x)))
|
||||
(lexico (lattice->cmp target))))
|
||||
|
||||
(define (count-maps source target)
|
||||
(maps-rest source
|
||||
target
|
||||
'()
|
||||
(lattice->elements source)
|
||||
(lambda (x) 1)
|
||||
sum))
|
||||
|
||||
(define (sum lst)
|
||||
(if (null? lst)
|
||||
0
|
||||
(+ (car lst) (sum (cdr lst)))))
|
||||
|
||||
(define (run)
|
||||
(let* ((l2
|
||||
(make-lattice '(low high)
|
||||
(lambda (lhs rhs)
|
||||
(case lhs
|
||||
((low)
|
||||
(case rhs
|
||||
((low)
|
||||
'equal)
|
||||
((high)
|
||||
'less)
|
||||
(else
|
||||
(error 'make-lattice "base" rhs))))
|
||||
((high)
|
||||
(case rhs
|
||||
((low)
|
||||
'more)
|
||||
((high)
|
||||
'equal)
|
||||
(else
|
||||
(error 'make-lattice "base" rhs))))
|
||||
(else
|
||||
(error 'make-lattice "base" lhs))))))
|
||||
(l3 (maps l2 l2))
|
||||
(l4 (maps l3 l3)))
|
||||
(count-maps l2 l2)
|
||||
(count-maps l3 l3)
|
||||
(count-maps l2 l3)
|
||||
(count-maps l3 l2)
|
||||
(count-maps l4 l4)))
|
||||
|
||||
(time (run))
|
205
benchmarks/gabriel/lattice2.sch
Normal file
205
benchmarks/gabriel/lattice2.sch
Normal file
|
@ -0,0 +1,205 @@
|
|||
;; Like "lattice.sch", but uses `reverse' instead of
|
||||
;; defining `reverse!' (to avoid `set-cdr!')
|
||||
|
||||
;;; LATTICE -- Obtained from Andrew Wright.
|
||||
|
||||
; Given a comparison routine that returns one of
|
||||
; less
|
||||
; more
|
||||
; equal
|
||||
; uncomparable
|
||||
; return a new comparison routine that applies to sequences.
|
||||
(define lexico
|
||||
(lambda (base)
|
||||
(define lex-fixed
|
||||
(lambda (fixed lhs rhs)
|
||||
(define check
|
||||
(lambda (lhs rhs)
|
||||
(if (null? lhs)
|
||||
fixed
|
||||
(let ((probe
|
||||
(base (car lhs)
|
||||
(car rhs))))
|
||||
(if (or (eq? probe 'equal)
|
||||
(eq? probe fixed))
|
||||
(check (cdr lhs)
|
||||
(cdr rhs))
|
||||
'uncomparable)))))
|
||||
(check lhs rhs)))
|
||||
(define lex-first
|
||||
(lambda (lhs rhs)
|
||||
(if (null? lhs)
|
||||
'equal
|
||||
(let ((probe
|
||||
(base (car lhs)
|
||||
(car rhs))))
|
||||
(case probe
|
||||
((less more)
|
||||
(lex-fixed probe
|
||||
(cdr lhs)
|
||||
(cdr rhs)))
|
||||
((equal)
|
||||
(lex-first (cdr lhs)
|
||||
(cdr rhs)))
|
||||
((uncomparable)
|
||||
'uncomparable))))))
|
||||
lex-first))
|
||||
|
||||
(define (make-lattice elem-list cmp-func)
|
||||
(cons elem-list cmp-func))
|
||||
|
||||
(define lattice->elements car)
|
||||
|
||||
(define lattice->cmp cdr)
|
||||
|
||||
; Select elements of a list which pass some test.
|
||||
(define zulu-select
|
||||
(lambda (test lst)
|
||||
(define select-a
|
||||
(lambda (ac lst)
|
||||
(if (null? lst)
|
||||
(reverse ac)
|
||||
(select-a
|
||||
(let ((head (car lst)))
|
||||
(if (test head)
|
||||
(cons head ac)
|
||||
ac))
|
||||
(cdr lst)))))
|
||||
(select-a '() lst)))
|
||||
|
||||
; Select elements of a list which pass some test and map a function
|
||||
; over the result. Note, only efficiency prevents this from being the
|
||||
; composition of select and map.
|
||||
(define select-map
|
||||
(lambda (test func lst)
|
||||
(define select-a
|
||||
(lambda (ac lst)
|
||||
(if (null? lst)
|
||||
(reverse ac)
|
||||
(select-a
|
||||
(let ((head (car lst)))
|
||||
(if (test head)
|
||||
(cons (func head)
|
||||
ac)
|
||||
ac))
|
||||
(cdr lst)))))
|
||||
(select-a '() lst)))
|
||||
|
||||
|
||||
|
||||
; This version of map-and tail-recurses on the last test.
|
||||
(define map-and
|
||||
(lambda (proc lst)
|
||||
(if (null? lst)
|
||||
#t
|
||||
(letrec ((drudge
|
||||
(lambda (lst)
|
||||
(let ((rest (cdr lst)))
|
||||
(if (null? rest)
|
||||
(proc (car lst))
|
||||
(and (proc (car lst))
|
||||
(drudge rest)))))))
|
||||
(drudge lst)))))
|
||||
|
||||
(define (maps-1 source target pas new)
|
||||
(let ((scmp (lattice->cmp source))
|
||||
(tcmp (lattice->cmp target)))
|
||||
(let ((less
|
||||
(select-map
|
||||
(lambda (p)
|
||||
(eq? 'less
|
||||
(scmp (car p) new)))
|
||||
cdr
|
||||
pas))
|
||||
(more
|
||||
(select-map
|
||||
(lambda (p)
|
||||
(eq? 'more
|
||||
(scmp (car p) new)))
|
||||
cdr
|
||||
pas)))
|
||||
(zulu-select
|
||||
(lambda (t)
|
||||
(and
|
||||
(map-and
|
||||
(lambda (t2)
|
||||
(memq (tcmp t2 t) '(less equal)))
|
||||
less)
|
||||
(map-and
|
||||
(lambda (t2)
|
||||
(memq (tcmp t2 t) '(more equal)))
|
||||
more)))
|
||||
(lattice->elements target)))))
|
||||
|
||||
(define (maps-rest source target pas rest to-1 to-collect)
|
||||
(if (null? rest)
|
||||
(to-1 pas)
|
||||
(let ((next (car rest))
|
||||
(rest (cdr rest)))
|
||||
(to-collect
|
||||
(map
|
||||
(lambda (x)
|
||||
(maps-rest source target
|
||||
(cons
|
||||
(cons next x)
|
||||
pas)
|
||||
rest
|
||||
to-1
|
||||
to-collect))
|
||||
(maps-1 source target pas next))))))
|
||||
|
||||
(define (maps source target)
|
||||
(make-lattice
|
||||
(maps-rest source
|
||||
target
|
||||
'()
|
||||
(lattice->elements source)
|
||||
(lambda (x) (list (map cdr x)))
|
||||
(lambda (x) (apply append x)))
|
||||
(lexico (lattice->cmp target))))
|
||||
|
||||
(define (count-maps source target)
|
||||
(maps-rest source
|
||||
target
|
||||
'()
|
||||
(lattice->elements source)
|
||||
(lambda (x) 1)
|
||||
sum))
|
||||
|
||||
(define (sum lst)
|
||||
(if (null? lst)
|
||||
0
|
||||
(+ (car lst) (sum (cdr lst)))))
|
||||
|
||||
(define (run)
|
||||
(let* ((l2
|
||||
(make-lattice '(low high)
|
||||
(lambda (lhs rhs)
|
||||
(case lhs
|
||||
((low)
|
||||
(case rhs
|
||||
((low)
|
||||
'equal)
|
||||
((high)
|
||||
'less)
|
||||
(else
|
||||
(error 'make-lattice "base" rhs))))
|
||||
((high)
|
||||
(case rhs
|
||||
((low)
|
||||
'more)
|
||||
((high)
|
||||
'equal)
|
||||
(else
|
||||
(error 'make-lattice "base" rhs))))
|
||||
(else
|
||||
(error 'make-lattice "base" lhs))))))
|
||||
(l3 (maps l2 l2))
|
||||
(l4 (maps l3 l3)))
|
||||
(count-maps l2 l2)
|
||||
(count-maps l3 l3)
|
||||
(count-maps l2 l3)
|
||||
(count-maps l3 l2)
|
||||
(count-maps l4 l4)))
|
||||
|
||||
(time (run))
|
680
benchmarks/gabriel/maze.sch
Normal file
680
benchmarks/gabriel/maze.sch
Normal file
|
@ -0,0 +1,680 @@
|
|||
;;; MAZE -- Constructs a maze on a hexagonal grid, written by Olin Shivers.
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "rand.scm".
|
||||
|
||||
; Minimal Standard Random Number Generator
|
||||
; Park & Miller, CACM 31(10), Oct 1988, 32 bit integer version.
|
||||
; better constants, as proposed by Park.
|
||||
; By Ozan Yigit
|
||||
|
||||
;;; Rehacked by Olin 4/1995.
|
||||
|
||||
(define (random-state n)
|
||||
(cons n #f))
|
||||
|
||||
(define (rand state)
|
||||
(let ((seed (car state))
|
||||
(A 2813) ; 48271
|
||||
(M 8388607) ; 2147483647
|
||||
(Q 2787) ; 44488
|
||||
(R 2699)) ; 3399
|
||||
(let* ((hi (quotient seed Q))
|
||||
(lo (modulo seed Q))
|
||||
(test (- (* A lo) (* R hi)))
|
||||
(val (if (> test 0) test (+ test M))))
|
||||
(set-car! state val)
|
||||
val)))
|
||||
|
||||
(define (random-int n state)
|
||||
(modulo (rand state) n))
|
||||
|
||||
; poker test
|
||||
; seed 1
|
||||
; cards 0-9 inclusive (random 10)
|
||||
; five cards per hand
|
||||
; 10000 hands
|
||||
;
|
||||
; Poker Hand Example Probability Calculated
|
||||
; 5 of a kind (aaaaa) 0.0001 0
|
||||
; 4 of a kind (aaaab) 0.0045 0.0053
|
||||
; Full house (aaabb) 0.009 0.0093
|
||||
; 3 of a kind (aaabc) 0.072 0.0682
|
||||
; two pairs (aabbc) 0.108 0.1104
|
||||
; Pair (aabcd) 0.504 0.501
|
||||
; Bust (abcde) 0.3024 0.3058
|
||||
|
||||
; (define (random n)
|
||||
; (let* ((M 2147483647)
|
||||
; (slop (modulo M n)))
|
||||
; (let loop ((r (rand)))
|
||||
; (if (> r slop)
|
||||
; (modulo r n)
|
||||
; (loop (rand))))))
|
||||
;
|
||||
; (define (rngtest)
|
||||
; (display "implementation ")
|
||||
; (srand 1)
|
||||
; (let loop ((n 0))
|
||||
; (if (< n 10000)
|
||||
; (begin
|
||||
; (rand)
|
||||
; (loop (1+ n)))))
|
||||
; (if (= *seed* 399268537)
|
||||
; (display "looks correct.")
|
||||
; (begin
|
||||
; (display "failed.")
|
||||
; (newline)
|
||||
; (display " current seed ") (display *seed*)
|
||||
; (newline)
|
||||
; (display " correct seed 399268537")))
|
||||
; (newline))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "uf.scm".
|
||||
|
||||
;;; Tarjan's amortised union-find data structure.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; This data structure implements disjoint sets of elements.
|
||||
;;; Four operations are supported. The implementation is extremely
|
||||
;;; fast -- any sequence of N operations can be performed in time
|
||||
;;; so close to linear it's laughable how close it is. See your
|
||||
;;; intro data structures book for more. The operations are:
|
||||
;;;
|
||||
;;; - (base-set nelts) -> set
|
||||
;;; Returns a new set, of size NELTS.
|
||||
;;;
|
||||
;;; - (set-size s) -> integer
|
||||
;;; Returns the number of elements in set S.
|
||||
;;;
|
||||
;;; - (union! set1 set2)
|
||||
;;; Unions the two sets -- SET1 and SET2 are now considered the same set
|
||||
;;; by SET-EQUAL?.
|
||||
;;;
|
||||
;;; - (set-equal? set1 set2)
|
||||
;;; Returns true <==> the two sets are the same.
|
||||
|
||||
;;; Representation: a set is a cons cell. Every set has a "representative"
|
||||
;;; cons cell, reached by chasing cdr links until we find the cons with
|
||||
;;; cdr = (). Set equality is determined by comparing representatives using
|
||||
;;; EQ?. A representative's car contains the number of elements in the set.
|
||||
|
||||
;;; The speed of the algorithm comes because when we chase links to find
|
||||
;;; representatives, we collapse links by changing all the cells in the path
|
||||
;;; we followed to point directly to the representative, so that next time
|
||||
;;; we walk the cdr-chain, we'll go directly to the representative in one hop.
|
||||
|
||||
|
||||
(define (base-set nelts) (cons nelts '()))
|
||||
|
||||
;;; Sets are chained together through cdr links. Last guy in the chain
|
||||
;;; is the root of the set.
|
||||
|
||||
(define (get-set-root s)
|
||||
(let lp ((r s)) ; Find the last pair
|
||||
(let ((next (cdr r))) ; in the list. That's
|
||||
(cond ((pair? next) (lp next)) ; the root r.
|
||||
|
||||
(else
|
||||
(if (not (eq? r s)) ; Now zip down the list again,
|
||||
(let lp ((x s)) ; changing everyone's cdr to r.
|
||||
(let ((next (cdr x)))
|
||||
(cond ((not (eq? r next))
|
||||
(set-cdr! x r)
|
||||
(lp next))))))
|
||||
r))))) ; Then return r.
|
||||
|
||||
(define (set-equal? s1 s2) (eq? (get-set-root s1) (get-set-root s2)))
|
||||
|
||||
(define (set-size s) (car (get-set-root s)))
|
||||
|
||||
(define (union! s1 s2)
|
||||
(let* ((r1 (get-set-root s1))
|
||||
(r2 (get-set-root s2))
|
||||
(n1 (set-size r1))
|
||||
(n2 (set-size r2))
|
||||
(n (+ n1 n2)))
|
||||
|
||||
(cond ((> n1 n2)
|
||||
(set-cdr! r2 r1)
|
||||
(set-car! r1 n))
|
||||
(else
|
||||
(set-cdr! r1 r2)
|
||||
(set-car! r2 n)))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "maze.scm".
|
||||
|
||||
;;; Building mazes with union/find disjoint sets.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; This is the algorithmic core of the maze constructor.
|
||||
;;; External dependencies:
|
||||
;;; - RANDOM-INT
|
||||
;;; - Union/find code
|
||||
;;; - bitwise logical functions
|
||||
|
||||
; (define-record wall
|
||||
; owner ; Cell that owns this wall.
|
||||
; neighbor ; The other cell bordering this wall.
|
||||
; bit) ; Integer -- a bit identifying this wall in OWNER's cell.
|
||||
|
||||
; (define-record cell
|
||||
; reachable ; Union/find set -- all reachable cells.
|
||||
; id ; Identifying info (e.g., the coords of the cell).
|
||||
; (walls -1) ; A bitset telling which walls are still standing.
|
||||
; (parent #f) ; For DFS spanning tree construction.
|
||||
; (mark #f)) ; For marking the solution path.
|
||||
|
||||
(define (make-wall owner neighbor bit)
|
||||
(vector 'wall owner neighbor bit))
|
||||
|
||||
(define (wall:owner o) (vector-ref o 1))
|
||||
(define (set-wall:owner o v) (vector-set! o 1 v))
|
||||
(define (wall:neighbor o) (vector-ref o 2))
|
||||
(define (set-wall:neighbor o v) (vector-set! o 2 v))
|
||||
(define (wall:bit o) (vector-ref o 3))
|
||||
(define (set-wall:bit o v) (vector-set! o 3 v))
|
||||
|
||||
(define (make-cell reachable id)
|
||||
(vector 'cell reachable id -1 #f #f))
|
||||
|
||||
(define (cell:reachable o) (vector-ref o 1))
|
||||
(define (set-cell:reachable o v) (vector-set! o 1 v))
|
||||
(define (cell:id o) (vector-ref o 2))
|
||||
(define (set-cell:id o v) (vector-set! o 2 v))
|
||||
(define (cell:walls o) (vector-ref o 3))
|
||||
(define (set-cell:walls o v) (vector-set! o 3 v))
|
||||
(define (cell:parent o) (vector-ref o 4))
|
||||
(define (set-cell:parent o v) (vector-set! o 4 v))
|
||||
(define (cell:mark o) (vector-ref o 5))
|
||||
(define (set-cell:mark o v) (vector-set! o 5 v))
|
||||
|
||||
;;; Iterates in reverse order.
|
||||
|
||||
(define (vec-for-each proc v)
|
||||
(let lp ((i (- (vector-length v) 1)))
|
||||
(cond ((>= i 0)
|
||||
(proc (vector-ref v i))
|
||||
(lp (- i 1))))))
|
||||
|
||||
|
||||
;;; Randomly permute a vector.
|
||||
|
||||
(define (permute-vec! v random-state)
|
||||
(let lp ((i (- (vector-length v) 1)))
|
||||
(cond ((> i 1)
|
||||
(let ((elt-i (vector-ref v i))
|
||||
(j (random-int i random-state))) ; j in [0,i)
|
||||
(vector-set! v i (vector-ref v j))
|
||||
(vector-set! v j elt-i))
|
||||
(lp (- i 1)))))
|
||||
v)
|
||||
|
||||
|
||||
;;; This is the core of the algorithm.
|
||||
|
||||
(define (dig-maze walls ncells)
|
||||
(call-with-current-continuation
|
||||
(lambda (quit)
|
||||
(vec-for-each
|
||||
(lambda (wall) ; For each wall,
|
||||
(let* ((c1 (wall:owner wall)) ; find the cells on
|
||||
(set1 (cell:reachable c1))
|
||||
|
||||
(c2 (wall:neighbor wall)) ; each side of the wall
|
||||
(set2 (cell:reachable c2)))
|
||||
|
||||
;; If there is no path from c1 to c2, knock down the
|
||||
;; wall and union the two sets of reachable cells.
|
||||
;; If the new set of reachable cells is the whole set
|
||||
;; of cells, quit.
|
||||
(if (not (set-equal? set1 set2))
|
||||
(let ((walls (cell:walls c1))
|
||||
(wall-mask (bitwise-not (wall:bit wall))))
|
||||
(union! set1 set2)
|
||||
(set-cell:walls c1 (bitwise-and walls wall-mask))
|
||||
(if (= (set-size set1) ncells) (quit #f))))))
|
||||
walls))))
|
||||
|
||||
|
||||
;;; Some simple DFS routines useful for determining path length
|
||||
;;; through the maze.
|
||||
|
||||
;;; Build a DFS tree from ROOT.
|
||||
;;; (DO-CHILDREN proc maze node) applies PROC to each of NODE's children.
|
||||
;;; We assume there are no loops in the maze; if this is incorrect, the
|
||||
;;; algorithm will diverge.
|
||||
|
||||
(define (dfs-maze maze root do-children)
|
||||
(let search ((node root) (parent #f))
|
||||
(set-cell:parent node parent)
|
||||
(do-children (lambda (child)
|
||||
(if (not (eq? child parent))
|
||||
(search child node)))
|
||||
maze node)))
|
||||
|
||||
;;; Move the root to NEW-ROOT.
|
||||
|
||||
(define (reroot-maze new-root)
|
||||
(let lp ((node new-root) (new-parent #f))
|
||||
(let ((old-parent (cell:parent node)))
|
||||
(set-cell:parent node new-parent)
|
||||
(if old-parent (lp old-parent node)))))
|
||||
|
||||
;;; How far from CELL to the root?
|
||||
|
||||
(define (path-length cell)
|
||||
(do ((len 0 (+ len 1))
|
||||
(node (cell:parent cell) (cell:parent node)))
|
||||
((not node) len)))
|
||||
|
||||
;;; Mark the nodes from NODE back to root. Used to mark the winning path.
|
||||
|
||||
(define (mark-path node)
|
||||
(let lp ((node node))
|
||||
(set-cell:mark node #t)
|
||||
(cond ((cell:parent node) => lp))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "harr.scm".
|
||||
|
||||
;;; Hex arrays
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - define-record
|
||||
|
||||
;;; ___ ___ ___
|
||||
;;; / \ / \ / \
|
||||
;;; ___/ A \___/ A \___/ A \___
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / A \___/ A \___/ A \___/ A \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / \___/ \___/ \___/ \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / \___/ \___/ \___/ \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
|
||||
;;; Hex arrays are indexed by the (x,y) coord of the center of the hexagonal
|
||||
;;; element. Hexes are three wide and two high; e.g., to get from the center
|
||||
;;; of an elt to its {NW, N, NE} neighbors, add {(-3,1), (0,2), (3,1)}
|
||||
;;; respectively.
|
||||
;;;
|
||||
;;; Hex arrays are represented with a matrix, essentially made by shoving the
|
||||
;;; odd columns down a half-cell so things line up. The mapping is as follows:
|
||||
;;; Center coord row/column
|
||||
;;; ------------ ----------
|
||||
;;; (x, y) -> (y/2, x/3)
|
||||
;;; (3c, 2r + c&1) <- (r, c)
|
||||
|
||||
|
||||
; (define-record harr
|
||||
; nrows
|
||||
; ncols
|
||||
; elts)
|
||||
|
||||
(define (make-harr nrows ncols elts)
|
||||
(vector 'harr nrows ncols elts))
|
||||
|
||||
(define (harr:nrows o) (vector-ref o 1))
|
||||
(define (set-harr:nrows o v) (vector-set! o 1 v))
|
||||
(define (harr:ncols o) (vector-ref o 2))
|
||||
(define (set-harr:ncols o v) (vector-set! o 2 v))
|
||||
(define (harr:elts o) (vector-ref o 3))
|
||||
(define (set-harr:elts o v) (vector-set! o 3 v))
|
||||
|
||||
(define (harr r c)
|
||||
(make-harr r c (make-vector (* r c))))
|
||||
|
||||
|
||||
|
||||
(define (href ha x y)
|
||||
(let ((r (quotient y 2))
|
||||
(c (quotient x 3)))
|
||||
(vector-ref (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c))))
|
||||
|
||||
(define (hset! ha x y val)
|
||||
(let ((r (quotient y 2))
|
||||
(c (quotient x 3)))
|
||||
(vector-set! (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c)
|
||||
val)))
|
||||
|
||||
(define (href/rc ha r c)
|
||||
(vector-ref (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c)))
|
||||
|
||||
;;; Create a nrows x ncols hex array. The elt centered on coord (x, y)
|
||||
;;; is the value returned by (PROC x y).
|
||||
|
||||
(define (harr-tabulate nrows ncols proc)
|
||||
(let ((v (make-vector (* nrows ncols))))
|
||||
|
||||
(do ((r (- nrows 1) (- r 1)))
|
||||
((< r 0))
|
||||
(do ((c 0 (+ c 1))
|
||||
(i (* r ncols) (+ i 1)))
|
||||
((= c ncols))
|
||||
(vector-set! v i (proc (* 3 c) (+ (* 2 r) (bitwise-and c 1))))))
|
||||
|
||||
(make-harr nrows ncols v)))
|
||||
|
||||
|
||||
(define (harr-for-each proc harr)
|
||||
(vec-for-each proc (harr:elts harr)))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "hex.scm".
|
||||
|
||||
;;; Hexagonal hackery for maze generation.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - cell and wall records
|
||||
;;; - Functional Postscript for HEXES->PATH
|
||||
;;; - logical functions for bit hacking
|
||||
;;; - hex array code.
|
||||
|
||||
;;; To have the maze span (0,0) to (1,1):
|
||||
;;; (scale (/ (+ 1 (* 3 ncols))) (/ (+ 1 (* 2 nrows)))
|
||||
;;; (translate (point 2 1) maze))
|
||||
|
||||
;;; Every elt of the hex array manages his SW, S, and SE wall.
|
||||
;;; Terminology: - An even column is one whose column index is even. That
|
||||
;;; means the first, third, ... columns (indices 0, 2, ...).
|
||||
;;; - An odd column is one whose column index is odd. That
|
||||
;;; means the second, fourth... columns (indices 1, 3, ...).
|
||||
;;; The even/odd flip-flop is confusing; be careful to keep it
|
||||
;;; straight. The *even* columns are the low ones. The *odd*
|
||||
;;; columns are the high ones.
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/
|
||||
;;; 0 1 2 3
|
||||
|
||||
(define south-west 1)
|
||||
(define south 2)
|
||||
(define south-east 4)
|
||||
|
||||
(define (gen-maze-array r c)
|
||||
(harr-tabulate r c (lambda (x y) (make-cell (base-set 1) (cons x y)))))
|
||||
|
||||
;;; This could be made more efficient.
|
||||
(define (make-wall-vec harr)
|
||||
(let* ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr))
|
||||
(xmax (* 3 (- ncols 1)))
|
||||
|
||||
;; Accumulate walls.
|
||||
(walls '())
|
||||
(add-wall (lambda (o n b) ; owner neighbor bit
|
||||
(set! walls (cons (make-wall o n b) walls)))))
|
||||
|
||||
;; Do everything but the bottom row.
|
||||
(do ((x (* (- ncols 1) 3) (- x 3)))
|
||||
((< x 0))
|
||||
(do ((y (+ (* (- nrows 1) 2) (bitwise-and x 1))
|
||||
(- y 2)))
|
||||
((<= y 1)) ; Don't do bottom row.
|
||||
(let ((hex (href harr x y)))
|
||||
(if (not (zero? x))
|
||||
(add-wall hex (href harr (- x 3) (- y 1)) south-west))
|
||||
(add-wall hex (href harr x (- y 2)) south)
|
||||
(if (< x xmax)
|
||||
(add-wall hex (href harr (+ x 3) (- y 1)) south-east)))))
|
||||
|
||||
;; Do the SE and SW walls of the odd columns on the bottom row.
|
||||
;; If the rightmost bottom hex lies in an odd column, however,
|
||||
;; don't add it's SE wall -- it's a corner hex, and has no SE neighbor.
|
||||
(if (> ncols 1)
|
||||
(let ((rmoc-x (+ 3 (* 6 (quotient (- ncols 2) 2)))))
|
||||
;; Do rightmost odd col.
|
||||
(let ((rmoc-hex (href harr rmoc-x 1)))
|
||||
(if (< rmoc-x xmax) ; Not a corner -- do E wall.
|
||||
(add-wall rmoc-hex (href harr xmax 0) south-east))
|
||||
(add-wall rmoc-hex (href harr (- rmoc-x 3) 0) south-west))
|
||||
|
||||
(do ((x (- rmoc-x 6) ; Do the rest of the bottom row's odd cols.
|
||||
(- x 6)))
|
||||
((< x 3)) ; 3 is X coord of leftmost odd column.
|
||||
(add-wall (href harr x 1) (href harr (- x 3) 0) south-west)
|
||||
(add-wall (href harr x 1) (href harr (+ x 3) 0) south-east))))
|
||||
|
||||
(list->vector walls)))
|
||||
|
||||
|
||||
;;; Find the cell ctop from the top row, and the cell cbot from the bottom
|
||||
;;; row such that cbot is furthest from ctop.
|
||||
;;; Return [ctop-x, ctop-y, cbot-x, cbot-y].
|
||||
|
||||
(define (pick-entrances harr)
|
||||
(dfs-maze harr (href/rc harr 0 0) for-each-hex-child)
|
||||
(let ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr)))
|
||||
(let tp-lp ((max-len -1)
|
||||
(entrance #f)
|
||||
(exit #f)
|
||||
(tcol (- ncols 1)))
|
||||
(if (< tcol 0) (vector entrance exit)
|
||||
(let ((top-cell (href/rc harr (- nrows 1) tcol)))
|
||||
(reroot-maze top-cell)
|
||||
(let ((result
|
||||
(let bt-lp ((max-len max-len)
|
||||
(entrance entrance)
|
||||
(exit exit)
|
||||
(bcol (- ncols 1)))
|
||||
; (format #t "~a ~a ~a ~a~%" max-len entrance exit bcol)
|
||||
(if (< bcol 0) (vector max-len entrance exit)
|
||||
(let ((this-len (path-length (href/rc harr 0 bcol))))
|
||||
(if (> this-len max-len)
|
||||
(bt-lp this-len tcol bcol (- bcol 1))
|
||||
(bt-lp max-len entrance exit (- bcol 1))))))))
|
||||
(let ((max-len (vector-ref result 0))
|
||||
(entrance (vector-ref result 1))
|
||||
(exit (vector-ref result 2)))
|
||||
(tp-lp max-len entrance exit (- tcol 1)))))))))
|
||||
|
||||
|
||||
|
||||
;;; Apply PROC to each node reachable from CELL.
|
||||
(define (for-each-hex-child proc harr cell)
|
||||
(let* ((walls (cell:walls cell))
|
||||
(id (cell:id cell))
|
||||
(x (car id))
|
||||
(y (cdr id))
|
||||
(nr (harr:nrows harr))
|
||||
(nc (harr:ncols harr))
|
||||
(maxy (* 2 (- nr 1)))
|
||||
(maxx (* 3 (- nc 1))))
|
||||
(if (not (bit-test walls south-west)) (proc (href harr (- x 3) (- y 1))))
|
||||
(if (not (bit-test walls south)) (proc (href harr x (- y 2))))
|
||||
(if (not (bit-test walls south-east)) (proc (href harr (+ x 3) (- y 1))))
|
||||
|
||||
;; NW neighbor, if there is one (we may be in col 1, or top row/odd col)
|
||||
(if (and (> x 0) ; Not in first column.
|
||||
(or (<= y maxy) ; Not on top row or
|
||||
(zero? (modulo x 6)))) ; not in an odd column.
|
||||
(let ((nw (href harr (- x 3) (+ y 1))))
|
||||
(if (not (bit-test (cell:walls nw) south-east)) (proc nw))))
|
||||
|
||||
;; N neighbor, if there is one (we may be on top row).
|
||||
(if (< y maxy) ; Not on top row
|
||||
(let ((n (href harr x (+ y 2))))
|
||||
(if (not (bit-test (cell:walls n) south)) (proc n))))
|
||||
|
||||
;; NE neighbor, if there is one (we may be in last col, or top row/odd col)
|
||||
(if (and (< x maxx) ; Not in last column.
|
||||
(or (<= y maxy) ; Not on top row or
|
||||
(zero? (modulo x 6)))) ; not in an odd column.
|
||||
(let ((ne (href harr (+ x 3) (+ y 1))))
|
||||
(if (not (bit-test (cell:walls ne) south-west)) (proc ne))))))
|
||||
|
||||
|
||||
|
||||
;;; The top-level
|
||||
(define (make-maze nrows ncols)
|
||||
(let* ((cells (gen-maze-array nrows ncols))
|
||||
(walls (permute-vec! (make-wall-vec cells) (random-state 20))))
|
||||
(dig-maze walls (* nrows ncols))
|
||||
(let ((result (pick-entrances cells)))
|
||||
(let ((entrance (vector-ref result 0))
|
||||
(exit (vector-ref result 1)))
|
||||
(let* ((exit-cell (href/rc cells 0 exit))
|
||||
(walls (cell:walls exit-cell)))
|
||||
(reroot-maze (href/rc cells (- nrows 1) entrance))
|
||||
(mark-path exit-cell)
|
||||
(set-cell:walls exit-cell (bitwise-and walls (bitwise-not south)))
|
||||
(vector cells entrance exit))))))
|
||||
|
||||
|
||||
(define (pmaze nrows ncols)
|
||||
(let ((result (make-maze nrows ncols)))
|
||||
(let ((cells (vector-ref result 0))
|
||||
(entrance (vector-ref result 1))
|
||||
(exit (vector-ref result 2)))
|
||||
(print-hexmaze cells entrance))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "hexprint.scm".
|
||||
|
||||
;;; Print out a hex array with characters.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - hex array code
|
||||
;;; - hex cell code
|
||||
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/
|
||||
|
||||
;;; Top part of top row looks like this:
|
||||
;;; _ _ _ _
|
||||
;;; _/ \_/ \/ \_/ \
|
||||
;;; /
|
||||
|
||||
(define output #f) ; the list of all characters written out, in reverse order.
|
||||
|
||||
(define (write-ch c)
|
||||
(set! output (cons c output)))
|
||||
|
||||
(define (print-hexmaze harr entrance)
|
||||
(let* ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr))
|
||||
(ncols2 (* 2 (quotient ncols 2))))
|
||||
|
||||
;; Print out the flat tops for the top row's odd cols.
|
||||
(do ((c 1 (+ c 2)))
|
||||
((>= c ncols))
|
||||
; (display " ")
|
||||
(write-ch #\space)
|
||||
(write-ch #\space)
|
||||
(write-ch #\space)
|
||||
(write-ch (if (= c entrance) #\space #\_)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
;; Print out the slanted tops for the top row's odd cols
|
||||
;; and the flat tops for the top row's even cols.
|
||||
(write-ch #\space)
|
||||
(do ((c 0 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
; (format #t "~a/~a\\"
|
||||
; (if (= c entrance) #\space #\_)
|
||||
; (dot/space harr (- nrows 1) (+ c 1)))
|
||||
(write-ch (if (= c entrance) #\space #\_))
|
||||
(write-ch #\/)
|
||||
(write-ch (dot/space harr (- nrows 1) (+ c 1)))
|
||||
(write-ch #\\))
|
||||
(if (odd? ncols)
|
||||
(write-ch (if (= entrance (- ncols 1)) #\space #\_)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
(do ((r (- nrows 1) (- r 1)))
|
||||
((< r 0))
|
||||
|
||||
;; Do the bottoms for row r's odd cols.
|
||||
(write-ch #\/)
|
||||
(do ((c 1 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
;; The dot/space for the even col just behind c.
|
||||
(write-ch (dot/space harr r (- c 1)))
|
||||
(display-hexbottom (cell:walls (href/rc harr r c))))
|
||||
|
||||
(cond ((odd? ncols)
|
||||
(write-ch (dot/space harr r (- ncols 1)))
|
||||
(write-ch #\\)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
;; Do the bottoms for row r's even cols.
|
||||
(do ((c 0 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
(display-hexbottom (cell:walls (href/rc harr r c)))
|
||||
;; The dot/space is for the odd col just after c, on row below.
|
||||
(write-ch (dot/space harr (- r 1) (+ c 1))))
|
||||
|
||||
(cond ((odd? ncols)
|
||||
(display-hexbottom (cell:walls (href/rc harr r (- ncols 1)))))
|
||||
((not (zero? r)) (write-ch #\\)))
|
||||
; (newline)
|
||||
(write-ch #\newline))))
|
||||
|
||||
(define (bit-test j bit)
|
||||
(not (zero? (bitwise-and j bit))))
|
||||
|
||||
;;; Return a . if harr[r,c] is marked, otherwise a space.
|
||||
;;; We use the dot to mark the solution path.
|
||||
(define (dot/space harr r c)
|
||||
(if (and (>= r 0) (cell:mark (href/rc harr r c))) #\. #\space))
|
||||
|
||||
;;; Print a \_/ hex bottom.
|
||||
(define (display-hexbottom hexwalls)
|
||||
(write-ch (if (bit-test hexwalls south-west) #\\ #\space))
|
||||
(write-ch (if (bit-test hexwalls south ) #\_ #\space))
|
||||
(write-ch (if (bit-test hexwalls south-east) #\/ #\space)))
|
||||
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \_/
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \_/
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 1000) (v 0))
|
||||
(if (zero? n)
|
||||
(list->string v)
|
||||
(begin
|
||||
(set! output '())
|
||||
(pmaze 20 (if input 7 0))
|
||||
(loop (- n 1) output))))))
|
683
benchmarks/gabriel/maze2.sch
Normal file
683
benchmarks/gabriel/maze2.sch
Normal file
|
@ -0,0 +1,683 @@
|
|||
;; Like "maze.sch", but avoids `set-car!' and `set-cdr!' by using
|
||||
;; vectors for mutable records.
|
||||
|
||||
;;; MAZE -- Constructs a maze on a hexagonal grid, written by Olin Shivers.
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "rand.scm".
|
||||
|
||||
; Minimal Standard Random Number Generator
|
||||
; Park & Miller, CACM 31(10), Oct 1988, 32 bit integer version.
|
||||
; better constants, as proposed by Park.
|
||||
; By Ozan Yigit
|
||||
|
||||
;;; Rehacked by Olin 4/1995.
|
||||
|
||||
(define (random-state n)
|
||||
(vector n))
|
||||
|
||||
(define (rand state)
|
||||
(let ((seed (vector-ref state 0))
|
||||
(A 2813) ; 48271
|
||||
(M 8388607) ; 2147483647
|
||||
(Q 2787) ; 44488
|
||||
(R 2699)) ; 3399
|
||||
(let* ((hi (quotient seed Q))
|
||||
(lo (modulo seed Q))
|
||||
(test (- (* A lo) (* R hi)))
|
||||
(val (if (> test 0) test (+ test M))))
|
||||
(vector-set! state 0 val)
|
||||
val)))
|
||||
|
||||
(define (random-int n state)
|
||||
(modulo (rand state) n))
|
||||
|
||||
; poker test
|
||||
; seed 1
|
||||
; cards 0-9 inclusive (random 10)
|
||||
; five cards per hand
|
||||
; 10000 hands
|
||||
;
|
||||
; Poker Hand Example Probability Calculated
|
||||
; 5 of a kind (aaaaa) 0.0001 0
|
||||
; 4 of a kind (aaaab) 0.0045 0.0053
|
||||
; Full house (aaabb) 0.009 0.0093
|
||||
; 3 of a kind (aaabc) 0.072 0.0682
|
||||
; two pairs (aabbc) 0.108 0.1104
|
||||
; Pair (aabcd) 0.504 0.501
|
||||
; Bust (abcde) 0.3024 0.3058
|
||||
|
||||
; (define (random n)
|
||||
; (let* ((M 2147483647)
|
||||
; (slop (modulo M n)))
|
||||
; (let loop ((r (rand)))
|
||||
; (if (> r slop)
|
||||
; (modulo r n)
|
||||
; (loop (rand))))))
|
||||
;
|
||||
; (define (rngtest)
|
||||
; (display "implementation ")
|
||||
; (srand 1)
|
||||
; (let loop ((n 0))
|
||||
; (if (< n 10000)
|
||||
; (begin
|
||||
; (rand)
|
||||
; (loop (1+ n)))))
|
||||
; (if (= *seed* 399268537)
|
||||
; (display "looks correct.")
|
||||
; (begin
|
||||
; (display "failed.")
|
||||
; (newline)
|
||||
; (display " current seed ") (display *seed*)
|
||||
; (newline)
|
||||
; (display " correct seed 399268537")))
|
||||
; (newline))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "uf.scm".
|
||||
|
||||
;;; Tarjan's amortised union-find data structure.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; This data structure implements disjoint sets of elements.
|
||||
;;; Four operations are supported. The implementation is extremely
|
||||
;;; fast -- any sequence of N operations can be performed in time
|
||||
;;; so close to linear it's laughable how close it is. See your
|
||||
;;; intro data structures book for more. The operations are:
|
||||
;;;
|
||||
;;; - (base-set nelts) -> set
|
||||
;;; Returns a new set, of size NELTS.
|
||||
;;;
|
||||
;;; - (set-size s) -> integer
|
||||
;;; Returns the number of elements in set S.
|
||||
;;;
|
||||
;;; - (union! set1 set2)
|
||||
;;; Unions the two sets -- SET1 and SET2 are now considered the same set
|
||||
;;; by SET-EQUAL?.
|
||||
;;;
|
||||
;;; - (set-equal? set1 set2)
|
||||
;;; Returns true <==> the two sets are the same.
|
||||
|
||||
;;; Representation: a set is a cons cell. Every set has a "representative"
|
||||
;;; cons cell, reached by chasing cdr links until we find the cons with
|
||||
;;; cdr = (). Set equality is determined by comparing representatives using
|
||||
;;; EQ?. A representative's car contains the number of elements in the set.
|
||||
|
||||
;;; The speed of the algorithm comes because when we chase links to find
|
||||
;;; representatives, we collapse links by changing all the cells in the path
|
||||
;;; we followed to point directly to the representative, so that next time
|
||||
;;; we walk the cdr-chain, we'll go directly to the representative in one hop.
|
||||
|
||||
|
||||
(define (base-set nelts) (vector nelts '()))
|
||||
|
||||
;;; Sets are chained together through cdr links. Last guy in the chain
|
||||
;;; is the root of the set.
|
||||
|
||||
(define (get-set-root s)
|
||||
(let lp ((r s)) ; Find the last pair
|
||||
(let ((next (vector-ref r 1))) ; in the list. That's
|
||||
(cond ((vector? next) (lp next)) ; the root r.
|
||||
|
||||
(else
|
||||
(if (not (eq? r s)) ; Now zip down the list again,
|
||||
(let lp ((x s)) ; changing everyone's cdr to r.
|
||||
(let ((next (vector-ref x 1)))
|
||||
(cond ((not (eq? r next))
|
||||
(vector-set! x 1 r)
|
||||
(lp next))))))
|
||||
r))))) ; Then return r.
|
||||
|
||||
(define (set-equal? s1 s2) (eq? (get-set-root s1) (get-set-root s2)))
|
||||
|
||||
(define (set-size s) (vector-ref (get-set-root s) 0))
|
||||
|
||||
(define (union! s1 s2)
|
||||
(let* ((r1 (get-set-root s1))
|
||||
(r2 (get-set-root s2))
|
||||
(n1 (set-size r1))
|
||||
(n2 (set-size r2))
|
||||
(n (+ n1 n2)))
|
||||
|
||||
(cond ((> n1 n2)
|
||||
(vector-set! r2 1 r1)
|
||||
(vector-set! r1 1 n))
|
||||
(else
|
||||
(vector-set! r1 1 r2)
|
||||
(vector-set! r2 1 n)))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "maze.scm".
|
||||
|
||||
;;; Building mazes with union/find disjoint sets.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; This is the algorithmic core of the maze constructor.
|
||||
;;; External dependencies:
|
||||
;;; - RANDOM-INT
|
||||
;;; - Union/find code
|
||||
;;; - bitwise logical functions
|
||||
|
||||
; (define-record wall
|
||||
; owner ; Cell that owns this wall.
|
||||
; neighbor ; The other cell bordering this wall.
|
||||
; bit) ; Integer -- a bit identifying this wall in OWNER's cell.
|
||||
|
||||
; (define-record cell
|
||||
; reachable ; Union/find set -- all reachable cells.
|
||||
; id ; Identifying info (e.g., the coords of the cell).
|
||||
; (walls -1) ; A bitset telling which walls are still standing.
|
||||
; (parent #f) ; For DFS spanning tree construction.
|
||||
; (mark #f)) ; For marking the solution path.
|
||||
|
||||
(define (make-wall owner neighbor bit)
|
||||
(vector 'wall owner neighbor bit))
|
||||
|
||||
(define (wall:owner o) (vector-ref o 1))
|
||||
(define (set-wall:owner o v) (vector-set! o 1 v))
|
||||
(define (wall:neighbor o) (vector-ref o 2))
|
||||
(define (set-wall:neighbor o v) (vector-set! o 2 v))
|
||||
(define (wall:bit o) (vector-ref o 3))
|
||||
(define (set-wall:bit o v) (vector-set! o 3 v))
|
||||
|
||||
(define (make-cell reachable id)
|
||||
(vector 'cell reachable id -1 #f #f))
|
||||
|
||||
(define (cell:reachable o) (vector-ref o 1))
|
||||
(define (set-cell:reachable o v) (vector-set! o 1 v))
|
||||
(define (cell:id o) (vector-ref o 2))
|
||||
(define (set-cell:id o v) (vector-set! o 2 v))
|
||||
(define (cell:walls o) (vector-ref o 3))
|
||||
(define (set-cell:walls o v) (vector-set! o 3 v))
|
||||
(define (cell:parent o) (vector-ref o 4))
|
||||
(define (set-cell:parent o v) (vector-set! o 4 v))
|
||||
(define (cell:mark o) (vector-ref o 5))
|
||||
(define (set-cell:mark o v) (vector-set! o 5 v))
|
||||
|
||||
;;; Iterates in reverse order.
|
||||
|
||||
(define (vec-for-each proc v)
|
||||
(let lp ((i (- (vector-length v) 1)))
|
||||
(cond ((>= i 0)
|
||||
(proc (vector-ref v i))
|
||||
(lp (- i 1))))))
|
||||
|
||||
|
||||
;;; Randomly permute a vector.
|
||||
|
||||
(define (permute-vec! v random-state)
|
||||
(let lp ((i (- (vector-length v) 1)))
|
||||
(cond ((> i 1)
|
||||
(let ((elt-i (vector-ref v i))
|
||||
(j (random-int i random-state))) ; j in [0,i)
|
||||
(vector-set! v i (vector-ref v j))
|
||||
(vector-set! v j elt-i))
|
||||
(lp (- i 1)))))
|
||||
v)
|
||||
|
||||
|
||||
;;; This is the core of the algorithm.
|
||||
|
||||
(define (dig-maze walls ncells)
|
||||
(call-with-current-continuation
|
||||
(lambda (quit)
|
||||
(vec-for-each
|
||||
(lambda (wall) ; For each wall,
|
||||
(let* ((c1 (wall:owner wall)) ; find the cells on
|
||||
(set1 (cell:reachable c1))
|
||||
|
||||
(c2 (wall:neighbor wall)) ; each side of the wall
|
||||
(set2 (cell:reachable c2)))
|
||||
|
||||
;; If there is no path from c1 to c2, knock down the
|
||||
;; wall and union the two sets of reachable cells.
|
||||
;; If the new set of reachable cells is the whole set
|
||||
;; of cells, quit.
|
||||
(if (not (set-equal? set1 set2))
|
||||
(let ((walls (cell:walls c1))
|
||||
(wall-mask (bitwise-not (wall:bit wall))))
|
||||
(union! set1 set2)
|
||||
(set-cell:walls c1 (bitwise-and walls wall-mask))
|
||||
(if (= (set-size set1) ncells) (quit #f))))))
|
||||
walls))))
|
||||
|
||||
|
||||
;;; Some simple DFS routines useful for determining path length
|
||||
;;; through the maze.
|
||||
|
||||
;;; Build a DFS tree from ROOT.
|
||||
;;; (DO-CHILDREN proc maze node) applies PROC to each of NODE's children.
|
||||
;;; We assume there are no loops in the maze; if this is incorrect, the
|
||||
;;; algorithm will diverge.
|
||||
|
||||
(define (dfs-maze maze root do-children)
|
||||
(let search ((node root) (parent #f))
|
||||
(set-cell:parent node parent)
|
||||
(do-children (lambda (child)
|
||||
(if (not (eq? child parent))
|
||||
(search child node)))
|
||||
maze node)))
|
||||
|
||||
;;; Move the root to NEW-ROOT.
|
||||
|
||||
(define (reroot-maze new-root)
|
||||
(let lp ((node new-root) (new-parent #f))
|
||||
(let ((old-parent (cell:parent node)))
|
||||
(set-cell:parent node new-parent)
|
||||
(if old-parent (lp old-parent node)))))
|
||||
|
||||
;;; How far from CELL to the root?
|
||||
|
||||
(define (path-length cell)
|
||||
(do ((len 0 (+ len 1))
|
||||
(node (cell:parent cell) (cell:parent node)))
|
||||
((not node) len)))
|
||||
|
||||
;;; Mark the nodes from NODE back to root. Used to mark the winning path.
|
||||
|
||||
(define (mark-path node)
|
||||
(let lp ((node node))
|
||||
(set-cell:mark node #t)
|
||||
(cond ((cell:parent node) => lp))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "harr.scm".
|
||||
|
||||
;;; Hex arrays
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - define-record
|
||||
|
||||
;;; ___ ___ ___
|
||||
;;; / \ / \ / \
|
||||
;;; ___/ A \___/ A \___/ A \___
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / A \___/ A \___/ A \___/ A \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / \___/ \___/ \___/ \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
;;; / \ / \ / \ / \
|
||||
;;; / \___/ \___/ \___/ \
|
||||
;;; \ / \ / \ / \ /
|
||||
;;; \___/ \___/ \___/ \___/
|
||||
|
||||
;;; Hex arrays are indexed by the (x,y) coord of the center of the hexagonal
|
||||
;;; element. Hexes are three wide and two high; e.g., to get from the center
|
||||
;;; of an elt to its {NW, N, NE} neighbors, add {(-3,1), (0,2), (3,1)}
|
||||
;;; respectively.
|
||||
;;;
|
||||
;;; Hex arrays are represented with a matrix, essentially made by shoving the
|
||||
;;; odd columns down a half-cell so things line up. The mapping is as follows:
|
||||
;;; Center coord row/column
|
||||
;;; ------------ ----------
|
||||
;;; (x, y) -> (y/2, x/3)
|
||||
;;; (3c, 2r + c&1) <- (r, c)
|
||||
|
||||
|
||||
; (define-record harr
|
||||
; nrows
|
||||
; ncols
|
||||
; elts)
|
||||
|
||||
(define (make-harr nrows ncols elts)
|
||||
(vector 'harr nrows ncols elts))
|
||||
|
||||
(define (harr:nrows o) (vector-ref o 1))
|
||||
(define (set-harr:nrows o v) (vector-set! o 1 v))
|
||||
(define (harr:ncols o) (vector-ref o 2))
|
||||
(define (set-harr:ncols o v) (vector-set! o 2 v))
|
||||
(define (harr:elts o) (vector-ref o 3))
|
||||
(define (set-harr:elts o v) (vector-set! o 3 v))
|
||||
|
||||
(define (harr r c)
|
||||
(make-harr r c (make-vector (* r c))))
|
||||
|
||||
|
||||
|
||||
(define (href ha x y)
|
||||
(let ((r (quotient y 2))
|
||||
(c (quotient x 3)))
|
||||
(vector-ref (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c))))
|
||||
|
||||
(define (hset! ha x y val)
|
||||
(let ((r (quotient y 2))
|
||||
(c (quotient x 3)))
|
||||
(vector-set! (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c)
|
||||
val)))
|
||||
|
||||
(define (href/rc ha r c)
|
||||
(vector-ref (harr:elts ha)
|
||||
(+ (* (harr:ncols ha) r) c)))
|
||||
|
||||
;;; Create a nrows x ncols hex array. The elt centered on coord (x, y)
|
||||
;;; is the value returned by (PROC x y).
|
||||
|
||||
(define (harr-tabulate nrows ncols proc)
|
||||
(let ((v (make-vector (* nrows ncols))))
|
||||
|
||||
(do ((r (- nrows 1) (- r 1)))
|
||||
((< r 0))
|
||||
(do ((c 0 (+ c 1))
|
||||
(i (* r ncols) (+ i 1)))
|
||||
((= c ncols))
|
||||
(vector-set! v i (proc (* 3 c) (+ (* 2 r) (bitwise-and c 1))))))
|
||||
|
||||
(make-harr nrows ncols v)))
|
||||
|
||||
|
||||
(define (harr-for-each proc harr)
|
||||
(vec-for-each proc (harr:elts harr)))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "hex.scm".
|
||||
|
||||
;;; Hexagonal hackery for maze generation.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - cell and wall records
|
||||
;;; - Functional Postscript for HEXES->PATH
|
||||
;;; - logical functions for bit hacking
|
||||
;;; - hex array code.
|
||||
|
||||
;;; To have the maze span (0,0) to (1,1):
|
||||
;;; (scale (/ (+ 1 (* 3 ncols))) (/ (+ 1 (* 2 nrows)))
|
||||
;;; (translate (point 2 1) maze))
|
||||
|
||||
;;; Every elt of the hex array manages his SW, S, and SE wall.
|
||||
;;; Terminology: - An even column is one whose column index is even. That
|
||||
;;; means the first, third, ... columns (indices 0, 2, ...).
|
||||
;;; - An odd column is one whose column index is odd. That
|
||||
;;; means the second, fourth... columns (indices 1, 3, ...).
|
||||
;;; The even/odd flip-flop is confusing; be careful to keep it
|
||||
;;; straight. The *even* columns are the low ones. The *odd*
|
||||
;;; columns are the high ones.
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/
|
||||
;;; 0 1 2 3
|
||||
|
||||
(define south-west 1)
|
||||
(define south 2)
|
||||
(define south-east 4)
|
||||
|
||||
(define (gen-maze-array r c)
|
||||
(harr-tabulate r c (lambda (x y) (make-cell (base-set 1) (cons x y)))))
|
||||
|
||||
;;; This could be made more efficient.
|
||||
(define (make-wall-vec harr)
|
||||
(let* ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr))
|
||||
(xmax (* 3 (- ncols 1)))
|
||||
|
||||
;; Accumulate walls.
|
||||
(walls '())
|
||||
(add-wall (lambda (o n b) ; owner neighbor bit
|
||||
(set! walls (cons (make-wall o n b) walls)))))
|
||||
|
||||
;; Do everything but the bottom row.
|
||||
(do ((x (* (- ncols 1) 3) (- x 3)))
|
||||
((< x 0))
|
||||
(do ((y (+ (* (- nrows 1) 2) (bitwise-and x 1))
|
||||
(- y 2)))
|
||||
((<= y 1)) ; Don't do bottom row.
|
||||
(let ((hex (href harr x y)))
|
||||
(if (not (zero? x))
|
||||
(add-wall hex (href harr (- x 3) (- y 1)) south-west))
|
||||
(add-wall hex (href harr x (- y 2)) south)
|
||||
(if (< x xmax)
|
||||
(add-wall hex (href harr (+ x 3) (- y 1)) south-east)))))
|
||||
|
||||
;; Do the SE and SW walls of the odd columns on the bottom row.
|
||||
;; If the rightmost bottom hex lies in an odd column, however,
|
||||
;; don't add it's SE wall -- it's a corner hex, and has no SE neighbor.
|
||||
(if (> ncols 1)
|
||||
(let ((rmoc-x (+ 3 (* 6 (quotient (- ncols 2) 2)))))
|
||||
;; Do rightmost odd col.
|
||||
(let ((rmoc-hex (href harr rmoc-x 1)))
|
||||
(if (< rmoc-x xmax) ; Not a corner -- do E wall.
|
||||
(add-wall rmoc-hex (href harr xmax 0) south-east))
|
||||
(add-wall rmoc-hex (href harr (- rmoc-x 3) 0) south-west))
|
||||
|
||||
(do ((x (- rmoc-x 6) ; Do the rest of the bottom row's odd cols.
|
||||
(- x 6)))
|
||||
((< x 3)) ; 3 is X coord of leftmost odd column.
|
||||
(add-wall (href harr x 1) (href harr (- x 3) 0) south-west)
|
||||
(add-wall (href harr x 1) (href harr (+ x 3) 0) south-east))))
|
||||
|
||||
(list->vector walls)))
|
||||
|
||||
|
||||
;;; Find the cell ctop from the top row, and the cell cbot from the bottom
|
||||
;;; row such that cbot is furthest from ctop.
|
||||
;;; Return [ctop-x, ctop-y, cbot-x, cbot-y].
|
||||
|
||||
(define (pick-entrances harr)
|
||||
(dfs-maze harr (href/rc harr 0 0) for-each-hex-child)
|
||||
(let ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr)))
|
||||
(let tp-lp ((max-len -1)
|
||||
(entrance #f)
|
||||
(exit #f)
|
||||
(tcol (- ncols 1)))
|
||||
(if (< tcol 0) (vector entrance exit)
|
||||
(let ((top-cell (href/rc harr (- nrows 1) tcol)))
|
||||
(reroot-maze top-cell)
|
||||
(let ((result
|
||||
(let bt-lp ((max-len max-len)
|
||||
(entrance entrance)
|
||||
(exit exit)
|
||||
(bcol (- ncols 1)))
|
||||
; (format #t "~a ~a ~a ~a~%" max-len entrance exit bcol)
|
||||
(if (< bcol 0) (vector max-len entrance exit)
|
||||
(let ((this-len (path-length (href/rc harr 0 bcol))))
|
||||
(if (> this-len max-len)
|
||||
(bt-lp this-len tcol bcol (- bcol 1))
|
||||
(bt-lp max-len entrance exit (- bcol 1))))))))
|
||||
(let ((max-len (vector-ref result 0))
|
||||
(entrance (vector-ref result 1))
|
||||
(exit (vector-ref result 2)))
|
||||
(tp-lp max-len entrance exit (- tcol 1)))))))))
|
||||
|
||||
|
||||
|
||||
;;; Apply PROC to each node reachable from CELL.
|
||||
(define (for-each-hex-child proc harr cell)
|
||||
(let* ((walls (cell:walls cell))
|
||||
(id (cell:id cell))
|
||||
(x (car id))
|
||||
(y (cdr id))
|
||||
(nr (harr:nrows harr))
|
||||
(nc (harr:ncols harr))
|
||||
(maxy (* 2 (- nr 1)))
|
||||
(maxx (* 3 (- nc 1))))
|
||||
(if (not (bit-test walls south-west)) (proc (href harr (- x 3) (- y 1))))
|
||||
(if (not (bit-test walls south)) (proc (href harr x (- y 2))))
|
||||
(if (not (bit-test walls south-east)) (proc (href harr (+ x 3) (- y 1))))
|
||||
|
||||
;; NW neighbor, if there is one (we may be in col 1, or top row/odd col)
|
||||
(if (and (> x 0) ; Not in first column.
|
||||
(or (<= y maxy) ; Not on top row or
|
||||
(zero? (modulo x 6)))) ; not in an odd column.
|
||||
(let ((nw (href harr (- x 3) (+ y 1))))
|
||||
(if (not (bit-test (cell:walls nw) south-east)) (proc nw))))
|
||||
|
||||
;; N neighbor, if there is one (we may be on top row).
|
||||
(if (< y maxy) ; Not on top row
|
||||
(let ((n (href harr x (+ y 2))))
|
||||
(if (not (bit-test (cell:walls n) south)) (proc n))))
|
||||
|
||||
;; NE neighbor, if there is one (we may be in last col, or top row/odd col)
|
||||
(if (and (< x maxx) ; Not in last column.
|
||||
(or (<= y maxy) ; Not on top row or
|
||||
(zero? (modulo x 6)))) ; not in an odd column.
|
||||
(let ((ne (href harr (+ x 3) (+ y 1))))
|
||||
(if (not (bit-test (cell:walls ne) south-west)) (proc ne))))))
|
||||
|
||||
|
||||
|
||||
;;; The top-level
|
||||
(define (make-maze nrows ncols)
|
||||
(let* ((cells (gen-maze-array nrows ncols))
|
||||
(walls (permute-vec! (make-wall-vec cells) (random-state 20))))
|
||||
(dig-maze walls (* nrows ncols))
|
||||
(let ((result (pick-entrances cells)))
|
||||
(let ((entrance (vector-ref result 0))
|
||||
(exit (vector-ref result 1)))
|
||||
(let* ((exit-cell (href/rc cells 0 exit))
|
||||
(walls (cell:walls exit-cell)))
|
||||
(reroot-maze (href/rc cells (- nrows 1) entrance))
|
||||
(mark-path exit-cell)
|
||||
(set-cell:walls exit-cell (bitwise-and walls (bitwise-not south)))
|
||||
(vector cells entrance exit))))))
|
||||
|
||||
|
||||
(define (pmaze nrows ncols)
|
||||
(let ((result (make-maze nrows ncols)))
|
||||
(let ((cells (vector-ref result 0))
|
||||
(entrance (vector-ref result 1))
|
||||
(exit (vector-ref result 2)))
|
||||
(print-hexmaze cells entrance))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Was file "hexprint.scm".
|
||||
|
||||
;;; Print out a hex array with characters.
|
||||
;;; Copyright (c) 1995 by Olin Shivers.
|
||||
|
||||
;;; External dependencies:
|
||||
;;; - hex array code
|
||||
;;; - hex cell code
|
||||
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/
|
||||
|
||||
;;; Top part of top row looks like this:
|
||||
;;; _ _ _ _
|
||||
;;; _/ \_/ \/ \_/ \
|
||||
;;; /
|
||||
|
||||
(define output #f) ; the list of all characters written out, in reverse order.
|
||||
|
||||
(define (write-ch c)
|
||||
(set! output (cons c output)))
|
||||
|
||||
(define (print-hexmaze harr entrance)
|
||||
(let* ((nrows (harr:nrows harr))
|
||||
(ncols (harr:ncols harr))
|
||||
(ncols2 (* 2 (quotient ncols 2))))
|
||||
|
||||
;; Print out the flat tops for the top row's odd cols.
|
||||
(do ((c 1 (+ c 2)))
|
||||
((>= c ncols))
|
||||
; (display " ")
|
||||
(write-ch #\space)
|
||||
(write-ch #\space)
|
||||
(write-ch #\space)
|
||||
(write-ch (if (= c entrance) #\space #\_)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
;; Print out the slanted tops for the top row's odd cols
|
||||
;; and the flat tops for the top row's even cols.
|
||||
(write-ch #\space)
|
||||
(do ((c 0 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
; (format #t "~a/~a\\"
|
||||
; (if (= c entrance) #\space #\_)
|
||||
; (dot/space harr (- nrows 1) (+ c 1)))
|
||||
(write-ch (if (= c entrance) #\space #\_))
|
||||
(write-ch #\/)
|
||||
(write-ch (dot/space harr (- nrows 1) (+ c 1)))
|
||||
(write-ch #\\))
|
||||
(if (odd? ncols)
|
||||
(write-ch (if (= entrance (- ncols 1)) #\space #\_)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
(do ((r (- nrows 1) (- r 1)))
|
||||
((< r 0))
|
||||
|
||||
;; Do the bottoms for row r's odd cols.
|
||||
(write-ch #\/)
|
||||
(do ((c 1 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
;; The dot/space for the even col just behind c.
|
||||
(write-ch (dot/space harr r (- c 1)))
|
||||
(display-hexbottom (cell:walls (href/rc harr r c))))
|
||||
|
||||
(cond ((odd? ncols)
|
||||
(write-ch (dot/space harr r (- ncols 1)))
|
||||
(write-ch #\\)))
|
||||
; (newline)
|
||||
(write-ch #\newline)
|
||||
|
||||
;; Do the bottoms for row r's even cols.
|
||||
(do ((c 0 (+ c 2)))
|
||||
((>= c ncols2))
|
||||
(display-hexbottom (cell:walls (href/rc harr r c)))
|
||||
;; The dot/space is for the odd col just after c, on row below.
|
||||
(write-ch (dot/space harr (- r 1) (+ c 1))))
|
||||
|
||||
(cond ((odd? ncols)
|
||||
(display-hexbottom (cell:walls (href/rc harr r (- ncols 1)))))
|
||||
((not (zero? r)) (write-ch #\\)))
|
||||
; (newline)
|
||||
(write-ch #\newline))))
|
||||
|
||||
(define (bit-test j bit)
|
||||
(not (zero? (bitwise-and j bit))))
|
||||
|
||||
;;; Return a . if harr[r,c] is marked, otherwise a space.
|
||||
;;; We use the dot to mark the solution path.
|
||||
(define (dot/space harr r c)
|
||||
(if (and (>= r 0) (cell:mark (href/rc harr r c))) #\. #\space))
|
||||
|
||||
;;; Print a \_/ hex bottom.
|
||||
(define (display-hexbottom hexwalls)
|
||||
(write-ch (if (bit-test hexwalls south-west) #\\ #\space))
|
||||
(write-ch (if (bit-test hexwalls south ) #\_ #\space))
|
||||
(write-ch (if (bit-test hexwalls south-east) #\/ #\space)))
|
||||
|
||||
;;; _ _
|
||||
;;; _/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \_/
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \
|
||||
;;; / \_/ \_/
|
||||
;;; \_/ \_/ \_/
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 1000) (v 0))
|
||||
(if (zero? n)
|
||||
(list->string v)
|
||||
(begin
|
||||
(set! output '())
|
||||
(pmaze 20 (if input 7 0))
|
||||
(loop (- n 1) output))))))
|
206
benchmarks/gabriel/mazefun.sch
Normal file
206
benchmarks/gabriel/mazefun.sch
Normal file
|
@ -0,0 +1,206 @@
|
|||
;;; MAZEFUN -- Constructs a maze in a purely functional way,
|
||||
;;; written by Marc Feeley.
|
||||
|
||||
(define iota
|
||||
(lambda (n)
|
||||
(iota-iter n '())))
|
||||
|
||||
(define iota-iter
|
||||
(lambda (n lst)
|
||||
(if (= n 0)
|
||||
lst
|
||||
(iota-iter (- n 1) (cons n lst)))))
|
||||
|
||||
(define foldr
|
||||
(lambda (f base lst)
|
||||
|
||||
(define foldr-aux
|
||||
(lambda (lst)
|
||||
(if (null? lst)
|
||||
base
|
||||
(f (car lst) (foldr-aux (cdr lst))))))
|
||||
|
||||
(foldr-aux lst)))
|
||||
|
||||
(define foldl
|
||||
(lambda (f base lst)
|
||||
|
||||
(define foldl-aux
|
||||
(lambda (base lst)
|
||||
(if (null? lst)
|
||||
base
|
||||
(foldl-aux (f base (car lst)) (cdr lst)))))
|
||||
|
||||
(foldl-aux base lst)))
|
||||
|
||||
(define for
|
||||
(lambda (lo hi f)
|
||||
|
||||
(define for-aux
|
||||
(lambda (lo)
|
||||
(if (< lo hi)
|
||||
(cons (f lo) (for-aux (+ lo 1)))
|
||||
'())))
|
||||
|
||||
(for-aux lo)))
|
||||
|
||||
(define concat
|
||||
(lambda (lists)
|
||||
(foldr append '() lists)))
|
||||
|
||||
(define list-read
|
||||
(lambda (lst i)
|
||||
(if (= i 0)
|
||||
(car lst)
|
||||
(list-read (cdr lst) (- i 1)))))
|
||||
|
||||
(define list-write
|
||||
(lambda (lst i val)
|
||||
(if (= i 0)
|
||||
(cons val (cdr lst))
|
||||
(cons (car lst) (list-write (cdr lst) (- i 1) val)))))
|
||||
|
||||
(define list-remove-pos
|
||||
(lambda (lst i)
|
||||
(if (= i 0)
|
||||
(cdr lst)
|
||||
(cons (car lst) (list-remove-pos (cdr lst) (- i 1))))))
|
||||
|
||||
(define duplicates?
|
||||
(lambda (lst)
|
||||
(if (null? lst)
|
||||
#f
|
||||
(or (member (car lst) (cdr lst))
|
||||
(duplicates? (cdr lst))))))
|
||||
|
||||
; Manipulation de matrices.
|
||||
|
||||
(define make-matrix
|
||||
(lambda (n m init)
|
||||
(for 0 n (lambda (i) (for 0 m (lambda (j) (init i j)))))))
|
||||
|
||||
(define matrix-read
|
||||
(lambda (mat i j)
|
||||
(list-read (list-read mat i) j)))
|
||||
|
||||
(define matrix-write
|
||||
(lambda (mat i j val)
|
||||
(list-write mat i (list-write (list-read mat i) j val))))
|
||||
|
||||
(define matrix-size
|
||||
(lambda (mat)
|
||||
(cons (length mat) (length (car mat)))))
|
||||
|
||||
(define matrix-map
|
||||
(lambda (f mat)
|
||||
(map (lambda (lst) (map f lst)) mat)))
|
||||
|
||||
(define initial-random 0)
|
||||
|
||||
(define next-random
|
||||
(lambda (current-random)
|
||||
(remainder (+ (* current-random 3581) 12751) 131072)))
|
||||
|
||||
(define shuffle
|
||||
(lambda (lst)
|
||||
(shuffle-aux lst initial-random)))
|
||||
|
||||
(define shuffle-aux
|
||||
(lambda (lst current-random)
|
||||
(if (null? lst)
|
||||
'()
|
||||
(let ((new-random (next-random current-random)))
|
||||
(let ((i (modulo new-random (length lst))))
|
||||
(cons (list-read lst i)
|
||||
(shuffle-aux (list-remove-pos lst i)
|
||||
new-random)))))))
|
||||
|
||||
(define make-maze
|
||||
(lambda (n m) ; n and m must be odd
|
||||
(if (not (and (odd? n) (odd? m)))
|
||||
'error
|
||||
(let ((cave
|
||||
(make-matrix n m (lambda (i j)
|
||||
(if (and (even? i) (even? j))
|
||||
(cons i j)
|
||||
#f))))
|
||||
(possible-holes
|
||||
(concat
|
||||
(for 0 n (lambda (i)
|
||||
(concat
|
||||
(for 0 m (lambda (j)
|
||||
(if (equal? (even? i) (even? j))
|
||||
'()
|
||||
(list (cons i j)))))))))))
|
||||
(cave-to-maze (pierce-randomly (shuffle possible-holes) cave))))))
|
||||
|
||||
(define cave-to-maze
|
||||
(lambda (cave)
|
||||
(matrix-map (lambda (x) (if x '_ '*)) cave)))
|
||||
|
||||
(define pierce
|
||||
(lambda (pos cave)
|
||||
(let ((i (car pos)) (j (cdr pos)))
|
||||
(matrix-write cave i j pos))))
|
||||
|
||||
(define pierce-randomly
|
||||
(lambda (possible-holes cave)
|
||||
(if (null? possible-holes)
|
||||
cave
|
||||
(let ((hole (car possible-holes)))
|
||||
(pierce-randomly (cdr possible-holes)
|
||||
(try-to-pierce hole cave))))))
|
||||
|
||||
(define try-to-pierce
|
||||
(lambda (pos cave)
|
||||
(let ((i (car pos)) (j (cdr pos)))
|
||||
(let ((ncs (neighboring-cavities pos cave)))
|
||||
(if (duplicates?
|
||||
(map (lambda (nc) (matrix-read cave (car nc) (cdr nc))) ncs))
|
||||
cave
|
||||
(pierce pos
|
||||
(foldl (lambda (c nc) (change-cavity c nc pos))
|
||||
cave
|
||||
ncs)))))))
|
||||
|
||||
(define change-cavity
|
||||
(lambda (cave pos new-cavity-id)
|
||||
(let ((i (car pos)) (j (cdr pos)))
|
||||
(change-cavity-aux cave pos new-cavity-id (matrix-read cave i j)))))
|
||||
|
||||
(define change-cavity-aux
|
||||
(lambda (cave pos new-cavity-id old-cavity-id)
|
||||
(let ((i (car pos)) (j (cdr pos)))
|
||||
(let ((cavity-id (matrix-read cave i j)))
|
||||
(if (equal? cavity-id old-cavity-id)
|
||||
(foldl (lambda (c nc)
|
||||
(change-cavity-aux c nc new-cavity-id old-cavity-id))
|
||||
(matrix-write cave i j new-cavity-id)
|
||||
(neighboring-cavities pos cave))
|
||||
cave)))))
|
||||
|
||||
(define neighboring-cavities
|
||||
(lambda (pos cave)
|
||||
(let ((size (matrix-size cave)))
|
||||
(let ((n (car size)) (m (cdr size)))
|
||||
(let ((i (car pos)) (j (cdr pos)))
|
||||
(append (if (and (> i 0) (matrix-read cave (- i 1) j))
|
||||
(list (cons (- i 1) j))
|
||||
'())
|
||||
(if (and (< i (- n 1)) (matrix-read cave (+ i 1) j))
|
||||
(list (cons (+ i 1) j))
|
||||
'())
|
||||
(if (and (> j 0) (matrix-read cave i (- j 1)))
|
||||
(list (cons i (- j 1)))
|
||||
'())
|
||||
(if (and (< j (- m 1)) (matrix-read cave i (+ j 1)))
|
||||
(list (cons i (+ j 1)))
|
||||
'())))))))
|
||||
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time (let loop ((n 500) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1)
|
||||
(make-maze 11 (if input 11 0)))))))
|
759
benchmarks/gabriel/nboyer.sch
Normal file
759
benchmarks/gabriel/nboyer.sch
Normal file
|
@ -0,0 +1,759 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: nboyer.sch
|
||||
; Description: The Boyer benchmark
|
||||
; Author: Bob Boyer
|
||||
; Created: 5-Apr-85
|
||||
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
|
||||
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
|
||||
; rewrote to eliminate property lists, and added
|
||||
; a scaling parameter suggested by Bob Boyer)
|
||||
; 19-Mar-99 (Will Clinger -- cleaned up comments)
|
||||
; 4-Apr-01 (Will Clinger -- changed four 1- symbols to sub1)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; NBOYER -- Logic programming benchmark, originally written by Bob Boyer.
|
||||
;;; Fairly CONS intensive.
|
||||
|
||||
; Note: The version of this benchmark that appears in Dick Gabriel's book
|
||||
; contained several bugs that are corrected here. These bugs are discussed
|
||||
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
|
||||
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
|
||||
;
|
||||
; The benchmark now returns a boolean result.
|
||||
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
|
||||
; in Common Lisp)
|
||||
; ONE-WAY-UNIFY1 now treats numbers correctly
|
||||
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
|
||||
; Rule 19 has been corrected (this rule was not touched by the original
|
||||
; benchmark, but is used by this version)
|
||||
; Rules 84 and 101 have been corrected (but these rules are never touched
|
||||
; by the benchmark)
|
||||
;
|
||||
; According to Baker, these bug fixes make the benchmark 10-25% slower.
|
||||
; Please do not compare the timings from this benchmark against those of
|
||||
; the original benchmark.
|
||||
;
|
||||
; This version of the benchmark also prints the number of rewrites as a sanity
|
||||
; check, because it is too easy for a buggy version to return the correct
|
||||
; boolean result. The correct number of rewrites is
|
||||
;
|
||||
; n rewrites peak live storage (approximate, in bytes)
|
||||
; 0 95024 520,000
|
||||
; 1 591777 2,085,000
|
||||
; 2 1813975 5,175,000
|
||||
; 3 5375678
|
||||
; 4 16445406
|
||||
; 5 51507739
|
||||
|
||||
; Nboyer is a 2-phase benchmark.
|
||||
; The first phase attaches lemmas to symbols. This phase is not timed,
|
||||
; but it accounts for very little of the runtime anyway.
|
||||
; The second phase creates the test problem, and tests to see
|
||||
; whether it is implied by the lemmas.
|
||||
|
||||
(define (nboyer-benchmark . args)
|
||||
(let ((n (if (null? args) 0 (car args))))
|
||||
(setup-boyer)
|
||||
(time (test-boyer n))))
|
||||
|
||||
(define (setup-boyer) #t) ; assigned below
|
||||
(define (test-boyer) #t) ; assigned below
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The first phase.
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; In the original benchmark, it stored a list of lemmas on the
|
||||
; property lists of symbols.
|
||||
; In the new benchmark, it maintains an association list of
|
||||
; symbols and symbol-records, and stores the list of lemmas
|
||||
; within the symbol-records.
|
||||
|
||||
(let ()
|
||||
|
||||
(define (setup)
|
||||
(add-lemma-lst
|
||||
(quote ((equal (compile form)
|
||||
(reverse (codegen (optimize form)
|
||||
(nil))))
|
||||
(equal (eqp x y)
|
||||
(equal (fix x)
|
||||
(fix y)))
|
||||
(equal (greaterp x y)
|
||||
(lessp y x))
|
||||
(equal (lesseqp x y)
|
||||
(not (lessp y x)))
|
||||
(equal (greatereqp x y)
|
||||
(not (lessp x y)))
|
||||
(equal (boolean x)
|
||||
(or (equal x (t))
|
||||
(equal x (f))))
|
||||
(equal (iff x y)
|
||||
(and (implies x y)
|
||||
(implies y x)))
|
||||
(equal (even1 x)
|
||||
(if (zerop x)
|
||||
(t)
|
||||
(odd (sub1 x))))
|
||||
(equal (countps- l pred)
|
||||
(countps-loop l pred (zero)))
|
||||
(equal (fact- i)
|
||||
(fact-loop i 1))
|
||||
(equal (reverse- x)
|
||||
(reverse-loop x (nil)))
|
||||
(equal (divides x y)
|
||||
(zerop (remainder y x)))
|
||||
(equal (assume-true var alist)
|
||||
(cons (cons var (t))
|
||||
alist))
|
||||
(equal (assume-false var alist)
|
||||
(cons (cons var (f))
|
||||
alist))
|
||||
(equal (tautology-checker x)
|
||||
(tautologyp (normalize x)
|
||||
(nil)))
|
||||
(equal (falsify x)
|
||||
(falsify1 (normalize x)
|
||||
(nil)))
|
||||
(equal (prime x)
|
||||
(and (not (zerop x))
|
||||
(not (equal x (add1 (zero))))
|
||||
(prime1 x (sub1 x))))
|
||||
(equal (and p q)
|
||||
(if p (if q (t)
|
||||
(f))
|
||||
(f)))
|
||||
(equal (or p q)
|
||||
(if p (t)
|
||||
(if q (t)
|
||||
(f))))
|
||||
(equal (not p)
|
||||
(if p (f)
|
||||
(t)))
|
||||
(equal (implies p q)
|
||||
(if p (if q (t)
|
||||
(f))
|
||||
(t)))
|
||||
(equal (fix x)
|
||||
(if (numberp x)
|
||||
x
|
||||
(zero)))
|
||||
(equal (if (if a b c)
|
||||
d e)
|
||||
(if a (if b d e)
|
||||
(if c d e)))
|
||||
(equal (zerop x)
|
||||
(or (equal x (zero))
|
||||
(not (numberp x))))
|
||||
(equal (plus (plus x y)
|
||||
z)
|
||||
(plus x (plus y z)))
|
||||
(equal (equal (plus a b)
|
||||
(zero))
|
||||
(and (zerop a)
|
||||
(zerop b)))
|
||||
(equal (difference x x)
|
||||
(zero))
|
||||
(equal (equal (plus a b)
|
||||
(plus a c))
|
||||
(equal (fix b)
|
||||
(fix c)))
|
||||
(equal (equal (zero)
|
||||
(difference x y))
|
||||
(not (lessp y x)))
|
||||
(equal (equal x (difference x y))
|
||||
(and (numberp x)
|
||||
(or (equal x (zero))
|
||||
(zerop y))))
|
||||
(equal (meaning (plus-tree (append x y))
|
||||
a)
|
||||
(plus (meaning (plus-tree x)
|
||||
a)
|
||||
(meaning (plus-tree y)
|
||||
a)))
|
||||
(equal (meaning (plus-tree (plus-fringe x))
|
||||
a)
|
||||
(fix (meaning x a)))
|
||||
(equal (append (append x y)
|
||||
z)
|
||||
(append x (append y z)))
|
||||
(equal (reverse (append a b))
|
||||
(append (reverse b)
|
||||
(reverse a)))
|
||||
(equal (times x (plus y z))
|
||||
(plus (times x y)
|
||||
(times x z)))
|
||||
(equal (times (times x y)
|
||||
z)
|
||||
(times x (times y z)))
|
||||
(equal (equal (times x y)
|
||||
(zero))
|
||||
(or (zerop x)
|
||||
(zerop y)))
|
||||
(equal (exec (append x y)
|
||||
pds envrn)
|
||||
(exec y (exec x pds envrn)
|
||||
envrn))
|
||||
(equal (mc-flatten x y)
|
||||
(append (flatten x)
|
||||
y))
|
||||
(equal (member x (append a b))
|
||||
(or (member x a)
|
||||
(member x b)))
|
||||
(equal (member x (reverse y))
|
||||
(member x y))
|
||||
(equal (length (reverse x))
|
||||
(length x))
|
||||
(equal (member a (intersect b c))
|
||||
(and (member a b)
|
||||
(member a c)))
|
||||
(equal (nth (zero)
|
||||
i)
|
||||
(zero))
|
||||
(equal (exp i (plus j k))
|
||||
(times (exp i j)
|
||||
(exp i k)))
|
||||
(equal (exp i (times j k))
|
||||
(exp (exp i j)
|
||||
k))
|
||||
(equal (reverse-loop x y)
|
||||
(append (reverse x)
|
||||
y))
|
||||
(equal (reverse-loop x (nil))
|
||||
(reverse x))
|
||||
(equal (count-list z (sort-lp x y))
|
||||
(plus (count-list z x)
|
||||
(count-list z y)))
|
||||
(equal (equal (append a b)
|
||||
(append a c))
|
||||
(equal b c))
|
||||
(equal (plus (remainder x y)
|
||||
(times y (quotient x y)))
|
||||
(fix x))
|
||||
(equal (power-eval (big-plus1 l i base)
|
||||
base)
|
||||
(plus (power-eval l base)
|
||||
i))
|
||||
(equal (power-eval (big-plus x y i base)
|
||||
base)
|
||||
(plus i (plus (power-eval x base)
|
||||
(power-eval y base))))
|
||||
(equal (remainder y 1)
|
||||
(zero))
|
||||
(equal (lessp (remainder x y)
|
||||
y)
|
||||
(not (zerop y)))
|
||||
(equal (remainder x x)
|
||||
(zero))
|
||||
(equal (lessp (quotient i j)
|
||||
i)
|
||||
(and (not (zerop i))
|
||||
(or (zerop j)
|
||||
(not (equal j 1)))))
|
||||
(equal (lessp (remainder x y)
|
||||
x)
|
||||
(and (not (zerop y))
|
||||
(not (zerop x))
|
||||
(not (lessp x y))))
|
||||
(equal (power-eval (power-rep i base)
|
||||
base)
|
||||
(fix i))
|
||||
(equal (power-eval (big-plus (power-rep i base)
|
||||
(power-rep j base)
|
||||
(zero)
|
||||
base)
|
||||
base)
|
||||
(plus i j))
|
||||
(equal (gcd x y)
|
||||
(gcd y x))
|
||||
(equal (nth (append a b)
|
||||
i)
|
||||
(append (nth a i)
|
||||
(nth b (difference i (length a)))))
|
||||
(equal (difference (plus x y)
|
||||
x)
|
||||
(fix y))
|
||||
(equal (difference (plus y x)
|
||||
x)
|
||||
(fix y))
|
||||
(equal (difference (plus x y)
|
||||
(plus x z))
|
||||
(difference y z))
|
||||
(equal (times x (difference c w))
|
||||
(difference (times c x)
|
||||
(times w x)))
|
||||
(equal (remainder (times x z)
|
||||
z)
|
||||
(zero))
|
||||
(equal (difference (plus b (plus a c))
|
||||
a)
|
||||
(plus b c))
|
||||
(equal (difference (add1 (plus y z))
|
||||
z)
|
||||
(add1 y))
|
||||
(equal (lessp (plus x y)
|
||||
(plus x z))
|
||||
(lessp y z))
|
||||
(equal (lessp (times x z)
|
||||
(times y z))
|
||||
(and (not (zerop z))
|
||||
(lessp x y)))
|
||||
(equal (lessp y (plus x y))
|
||||
(not (zerop x)))
|
||||
(equal (gcd (times x z)
|
||||
(times y z))
|
||||
(times z (gcd x y)))
|
||||
(equal (value (normalize x)
|
||||
a)
|
||||
(value x a))
|
||||
(equal (equal (flatten x)
|
||||
(cons y (nil)))
|
||||
(and (nlistp x)
|
||||
(equal x y)))
|
||||
(equal (listp (gopher x))
|
||||
(listp x))
|
||||
(equal (samefringe x y)
|
||||
(equal (flatten x)
|
||||
(flatten y)))
|
||||
(equal (equal (greatest-factor x y)
|
||||
(zero))
|
||||
(and (or (zerop y)
|
||||
(equal y 1))
|
||||
(equal x (zero))))
|
||||
(equal (equal (greatest-factor x y)
|
||||
1)
|
||||
(equal x 1))
|
||||
(equal (numberp (greatest-factor x y))
|
||||
(not (and (or (zerop y)
|
||||
(equal y 1))
|
||||
(not (numberp x)))))
|
||||
(equal (times-list (append x y))
|
||||
(times (times-list x)
|
||||
(times-list y)))
|
||||
(equal (prime-list (append x y))
|
||||
(and (prime-list x)
|
||||
(prime-list y)))
|
||||
(equal (equal z (times w z))
|
||||
(and (numberp z)
|
||||
(or (equal z (zero))
|
||||
(equal w 1))))
|
||||
(equal (greatereqp x y)
|
||||
(not (lessp x y)))
|
||||
(equal (equal x (times x y))
|
||||
(or (equal x (zero))
|
||||
(and (numberp x)
|
||||
(equal y 1))))
|
||||
(equal (remainder (times y x)
|
||||
y)
|
||||
(zero))
|
||||
(equal (equal (times a b)
|
||||
1)
|
||||
(and (not (equal a (zero)))
|
||||
(not (equal b (zero)))
|
||||
(numberp a)
|
||||
(numberp b)
|
||||
(equal (sub1 a)
|
||||
(zero))
|
||||
(equal (sub1 b)
|
||||
(zero))))
|
||||
(equal (lessp (length (delete x l))
|
||||
(length l))
|
||||
(member x l))
|
||||
(equal (sort2 (delete x l))
|
||||
(delete x (sort2 l)))
|
||||
(equal (dsort x)
|
||||
(sort2 x))
|
||||
(equal (length (cons x1
|
||||
(cons x2
|
||||
(cons x3 (cons x4
|
||||
(cons x5
|
||||
(cons x6 x7)))))))
|
||||
(plus 6 (length x7)))
|
||||
(equal (difference (add1 (add1 x))
|
||||
2)
|
||||
(fix x))
|
||||
(equal (quotient (plus x (plus x y))
|
||||
2)
|
||||
(plus x (quotient y 2)))
|
||||
(equal (sigma (zero)
|
||||
i)
|
||||
(quotient (times i (add1 i))
|
||||
2))
|
||||
(equal (plus x (add1 y))
|
||||
(if (numberp y)
|
||||
(add1 (plus x y))
|
||||
(add1 x)))
|
||||
(equal (equal (difference x y)
|
||||
(difference z y))
|
||||
(if (lessp x y)
|
||||
(not (lessp y z))
|
||||
(if (lessp z y)
|
||||
(not (lessp y x))
|
||||
(equal (fix x)
|
||||
(fix z)))))
|
||||
(equal (meaning (plus-tree (delete x y))
|
||||
a)
|
||||
(if (member x y)
|
||||
(difference (meaning (plus-tree y)
|
||||
a)
|
||||
(meaning x a))
|
||||
(meaning (plus-tree y)
|
||||
a)))
|
||||
(equal (times x (add1 y))
|
||||
(if (numberp y)
|
||||
(plus x (times x y))
|
||||
(fix x)))
|
||||
(equal (nth (nil)
|
||||
i)
|
||||
(if (zerop i)
|
||||
(nil)
|
||||
(zero)))
|
||||
(equal (last (append a b))
|
||||
(if (listp b)
|
||||
(last b)
|
||||
(if (listp a)
|
||||
(cons (car (last a))
|
||||
b)
|
||||
b)))
|
||||
(equal (equal (lessp x y)
|
||||
z)
|
||||
(if (lessp x y)
|
||||
(equal (t) z)
|
||||
(equal (f) z)))
|
||||
(equal (assignment x (append a b))
|
||||
(if (assignedp x a)
|
||||
(assignment x a)
|
||||
(assignment x b)))
|
||||
(equal (car (gopher x))
|
||||
(if (listp x)
|
||||
(car (flatten x))
|
||||
(zero)))
|
||||
(equal (flatten (cdr (gopher x)))
|
||||
(if (listp x)
|
||||
(cdr (flatten x))
|
||||
(cons (zero)
|
||||
(nil))))
|
||||
(equal (quotient (times y x)
|
||||
y)
|
||||
(if (zerop y)
|
||||
(zero)
|
||||
(fix x)))
|
||||
(equal (get j (set i val mem))
|
||||
(if (eqp j i)
|
||||
val
|
||||
(get j mem)))))))
|
||||
|
||||
(define (add-lemma-lst lst)
|
||||
(cond ((null? lst)
|
||||
#t)
|
||||
(else (add-lemma (car lst))
|
||||
(add-lemma-lst (cdr lst)))))
|
||||
|
||||
(define (add-lemma term)
|
||||
(cond ((and (pair? term)
|
||||
(eq? (car term)
|
||||
(quote equal))
|
||||
(pair? (cadr term)))
|
||||
(put (car (cadr term))
|
||||
(quote lemmas)
|
||||
(cons
|
||||
(translate-term term)
|
||||
(get (car (cadr term)) (quote lemmas)))))
|
||||
(else (error "ADD-LEMMA did not like term: " term))))
|
||||
|
||||
; Translates a term by replacing its constructor symbols by symbol-records.
|
||||
|
||||
(define (translate-term term)
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (cons (symbol->symbol-record (car term))
|
||||
(translate-args (cdr term))))))
|
||||
|
||||
(define (translate-args lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (cons (translate-term (car lst))
|
||||
(translate-args (cdr lst))))))
|
||||
|
||||
; For debugging only, so the use of MAP does not change
|
||||
; the first-order character of the benchmark.
|
||||
|
||||
(define (untranslate-term term)
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (cons (get-name (car term))
|
||||
(map untranslate-term (cdr term))))))
|
||||
|
||||
; A symbol-record is represented as a vector with two fields:
|
||||
; the symbol (for debugging) and
|
||||
; the list of lemmas associated with the symbol.
|
||||
|
||||
(define (put sym property value)
|
||||
(put-lemmas! (symbol->symbol-record sym) value))
|
||||
|
||||
(define (get sym property)
|
||||
(get-lemmas (symbol->symbol-record sym)))
|
||||
|
||||
(define (symbol->symbol-record sym)
|
||||
(let ((x (assq sym *symbol-records-alist*)))
|
||||
(if x
|
||||
(cdr x)
|
||||
(let ((r (make-symbol-record sym)))
|
||||
(set! *symbol-records-alist*
|
||||
(cons (cons sym r)
|
||||
*symbol-records-alist*))
|
||||
r))))
|
||||
|
||||
; Association list of symbols and symbol-records.
|
||||
|
||||
(define *symbol-records-alist* '())
|
||||
|
||||
; A symbol-record is represented as a vector with two fields:
|
||||
; the symbol (for debugging) and
|
||||
; the list of lemmas associated with the symbol.
|
||||
|
||||
(define (make-symbol-record sym)
|
||||
(vector sym '()))
|
||||
|
||||
(define (put-lemmas! symbol-record lemmas)
|
||||
(vector-set! symbol-record 1 lemmas))
|
||||
|
||||
(define (get-lemmas symbol-record)
|
||||
(vector-ref symbol-record 1))
|
||||
|
||||
(define (get-name symbol-record)
|
||||
(vector-ref symbol-record 0))
|
||||
|
||||
(define (symbol-record-equal? r1 r2)
|
||||
(eq? r1 r2))
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The second phase.
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
(define (test n)
|
||||
(let ((term
|
||||
(apply-subst
|
||||
(translate-alist
|
||||
(quote ((x f (plus (plus a b)
|
||||
(plus c (zero))))
|
||||
(y f (times (times a b)
|
||||
(plus c d)))
|
||||
(z f (reverse (append (append a b)
|
||||
(nil))))
|
||||
(u equal (plus a b)
|
||||
(difference x y))
|
||||
(w lessp (remainder a b)
|
||||
(member a (length b))))))
|
||||
(translate-term
|
||||
(do ((term
|
||||
(quote (implies (and (implies x y)
|
||||
(and (implies y z)
|
||||
(and (implies z u)
|
||||
(implies u w))))
|
||||
(implies x w)))
|
||||
(list 'or term '(f)))
|
||||
(n n (- n 1)))
|
||||
((zero? n) term))))))
|
||||
(tautp term)))
|
||||
|
||||
(define (translate-alist alist)
|
||||
(cond ((null? alist)
|
||||
'())
|
||||
(else (cons (cons (caar alist)
|
||||
(translate-term (cdar alist)))
|
||||
(translate-alist (cdr alist))))))
|
||||
|
||||
(define (apply-subst alist term)
|
||||
(cond ((not (pair? term))
|
||||
(let ((temp-temp (assq term alist)))
|
||||
(if temp-temp
|
||||
(cdr temp-temp)
|
||||
term)))
|
||||
(else (cons (car term)
|
||||
(apply-subst-lst alist (cdr term))))))
|
||||
|
||||
(define (apply-subst-lst alist lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (cons (apply-subst alist (car lst))
|
||||
(apply-subst-lst alist (cdr lst))))))
|
||||
|
||||
(define (tautp x)
|
||||
(tautologyp (rewrite x)
|
||||
'() '()))
|
||||
|
||||
(define (tautologyp x true-lst false-lst)
|
||||
(cond ((truep x true-lst)
|
||||
#t)
|
||||
((falsep x false-lst)
|
||||
#f)
|
||||
((not (pair? x))
|
||||
#f)
|
||||
((eq? (car x) if-constructor)
|
||||
(cond ((truep (cadr x)
|
||||
true-lst)
|
||||
(tautologyp (caddr x)
|
||||
true-lst false-lst))
|
||||
((falsep (cadr x)
|
||||
false-lst)
|
||||
(tautologyp (cadddr x)
|
||||
true-lst false-lst))
|
||||
(else (and (tautologyp (caddr x)
|
||||
(cons (cadr x)
|
||||
true-lst)
|
||||
false-lst)
|
||||
(tautologyp (cadddr x)
|
||||
true-lst
|
||||
(cons (cadr x)
|
||||
false-lst))))))
|
||||
(else #f)))
|
||||
|
||||
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
|
||||
|
||||
(define rewrite-count 0) ; sanity check
|
||||
|
||||
(define (rewrite term)
|
||||
(set! rewrite-count (+ rewrite-count 1))
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (rewrite-with-lemmas (cons (car term)
|
||||
(rewrite-args (cdr term)))
|
||||
(get-lemmas (car term))))))
|
||||
|
||||
(define (rewrite-args lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (cons (rewrite (car lst))
|
||||
(rewrite-args (cdr lst))))))
|
||||
|
||||
(define (rewrite-with-lemmas term lst)
|
||||
(cond ((null? lst)
|
||||
term)
|
||||
((one-way-unify term (cadr (car lst)))
|
||||
(rewrite (apply-subst unify-subst (caddr (car lst)))))
|
||||
(else (rewrite-with-lemmas term (cdr lst)))))
|
||||
|
||||
(define unify-subst '*)
|
||||
|
||||
(define (one-way-unify term1 term2)
|
||||
(begin (set! unify-subst '())
|
||||
(one-way-unify1 term1 term2)))
|
||||
|
||||
(define (one-way-unify1 term1 term2)
|
||||
(cond ((not (pair? term2))
|
||||
(let ((temp-temp (assq term2 unify-subst)))
|
||||
(cond (temp-temp
|
||||
(term-equal? term1 (cdr temp-temp)))
|
||||
((number? term2) ; This bug fix makes
|
||||
(equal? term1 term2)) ; nboyer 10-25% slower!
|
||||
(else
|
||||
(set! unify-subst (cons (cons term2 term1)
|
||||
unify-subst))
|
||||
#t))))
|
||||
((not (pair? term1))
|
||||
#f)
|
||||
((eq? (car term1)
|
||||
(car term2))
|
||||
(one-way-unify1-lst (cdr term1)
|
||||
(cdr term2)))
|
||||
(else #f)))
|
||||
|
||||
(define (one-way-unify1-lst lst1 lst2)
|
||||
(cond ((null? lst1)
|
||||
(null? lst2))
|
||||
((null? lst2)
|
||||
#f)
|
||||
((one-way-unify1 (car lst1)
|
||||
(car lst2))
|
||||
(one-way-unify1-lst (cdr lst1)
|
||||
(cdr lst2)))
|
||||
(else #f)))
|
||||
|
||||
(define (falsep x lst)
|
||||
(or (term-equal? x false-term)
|
||||
(term-member? x lst)))
|
||||
|
||||
(define (truep x lst)
|
||||
(or (term-equal? x true-term)
|
||||
(term-member? x lst)))
|
||||
|
||||
(define false-term '*) ; becomes (translate-term '(f))
|
||||
(define true-term '*) ; becomes (translate-term '(t))
|
||||
|
||||
; The next two procedures were in the original benchmark
|
||||
; but were never used.
|
||||
|
||||
(define (trans-of-implies n)
|
||||
(translate-term
|
||||
(list (quote implies)
|
||||
(trans-of-implies1 n)
|
||||
(list (quote implies)
|
||||
0 n))))
|
||||
|
||||
(define (trans-of-implies1 n)
|
||||
(cond ((equal? n 1)
|
||||
(list (quote implies)
|
||||
0 1))
|
||||
(else (list (quote and)
|
||||
(list (quote implies)
|
||||
(- n 1)
|
||||
n)
|
||||
(trans-of-implies1 (- n 1))))))
|
||||
|
||||
; Translated terms can be circular structures, which can't be
|
||||
; compared using Scheme's equal? and member procedures, so we
|
||||
; use these instead.
|
||||
|
||||
(define (term-equal? x y)
|
||||
(cond ((pair? x)
|
||||
(and (pair? y)
|
||||
(symbol-record-equal? (car x) (car y))
|
||||
(term-args-equal? (cdr x) (cdr y))))
|
||||
(else (equal? x y))))
|
||||
|
||||
(define (term-args-equal? lst1 lst2)
|
||||
(cond ((null? lst1)
|
||||
(null? lst2))
|
||||
((null? lst2)
|
||||
#f)
|
||||
((term-equal? (car lst1) (car lst2))
|
||||
(term-args-equal? (cdr lst1) (cdr lst2)))
|
||||
(else #f)))
|
||||
|
||||
(define (term-member? x lst)
|
||||
(cond ((null? lst)
|
||||
#f)
|
||||
((term-equal? x (car lst))
|
||||
#t)
|
||||
(else (term-member? x (cdr lst)))))
|
||||
|
||||
(set! setup-boyer
|
||||
(lambda ()
|
||||
(set! *symbol-records-alist* '())
|
||||
(set! if-constructor (symbol->symbol-record 'if))
|
||||
(set! false-term (translate-term '(f)))
|
||||
(set! true-term (translate-term '(t)))
|
||||
(setup)))
|
||||
|
||||
(set! test-boyer
|
||||
(lambda (n)
|
||||
(set! rewrite-count 0)
|
||||
(let ((answer (test n)))
|
||||
(write rewrite-count)
|
||||
(display " rewrites")
|
||||
(newline)
|
||||
(if answer
|
||||
rewrite-count
|
||||
#f)))))
|
||||
|
||||
(nboyer-benchmark 4)
|
||||
|
64
benchmarks/gabriel/nestedloop.sch
Normal file
64
benchmarks/gabriel/nestedloop.sch
Normal file
|
@ -0,0 +1,64 @@
|
|||
|
||||
;; Imperative body:
|
||||
(define (loops n)
|
||||
(let ((result 0))
|
||||
(let loop1 ((i1 1))
|
||||
(if (> i1 n)
|
||||
'done
|
||||
(begin
|
||||
(let loop2 ((i2 1))
|
||||
(if (> i2 n)
|
||||
'done
|
||||
(begin
|
||||
(let loop3 ((i3 1))
|
||||
(if (> i3 n)
|
||||
'done
|
||||
(begin
|
||||
(let loop4 ((i4 1))
|
||||
(if (> i4 n)
|
||||
'done
|
||||
(begin
|
||||
(let loop5 ((i5 1))
|
||||
(if (> i5 n)
|
||||
'done
|
||||
(begin
|
||||
(let loop6 ((i6 1))
|
||||
(if (> i6 n)
|
||||
'done
|
||||
(begin
|
||||
(set! result (+ result 1))
|
||||
(loop6 (+ i6 1)))))
|
||||
(loop5 (+ i5 1)))))
|
||||
(loop4 (+ i4 1)))))
|
||||
(loop3 (+ i3 1)))))
|
||||
(loop2 (+ i2 1)))))
|
||||
(loop1 (+ i1 1)))))
|
||||
result))
|
||||
|
||||
;; Functional body:
|
||||
(define (func-loops n)
|
||||
(let loop1 ((i1 1)(result 0))
|
||||
(if (> i1 n)
|
||||
result
|
||||
(let loop2 ((i2 1)(result result))
|
||||
(if (> i2 n)
|
||||
(loop1 (+ i1 1) result)
|
||||
(let loop3 ((i3 1)(result result))
|
||||
(if (> i3 n)
|
||||
(loop2 (+ i2 1) result)
|
||||
(let loop4 ((i4 1)(result result))
|
||||
(if (> i4 n)
|
||||
(loop3 (+ i3 1) result)
|
||||
(let loop5 ((i5 1)(result result))
|
||||
(if (> i5 n)
|
||||
(loop4 (+ i4 1) result)
|
||||
(let loop6 ((i6 1)(result result))
|
||||
(if (> i6 n)
|
||||
(loop5 (+ i5 1) result)
|
||||
(loop6 (+ i6 1) (+ result 1)))))))))))))))
|
||||
|
||||
(let ((cnt (if (with-input-from-file "input.txt" read) 18 1)))
|
||||
(time (list
|
||||
(loops cnt)
|
||||
(func-loops cnt))))
|
||||
|
53
benchmarks/gabriel/nfa.sch
Normal file
53
benchmarks/gabriel/nfa.sch
Normal file
|
@ -0,0 +1,53 @@
|
|||
; The recursive-nfa benchmark. (Figure 45, page 143.)
|
||||
|
||||
;; Changed by Matthew 2006/08/21 to move string->list out of the loop
|
||||
|
||||
|
||||
(define (recursive-nfa input)
|
||||
|
||||
(define (state0 input)
|
||||
(or (state1 input) (state3 input) #f))
|
||||
|
||||
(define (state1 input)
|
||||
(and (not (null? input))
|
||||
(or (and (char=? (car input) #\a)
|
||||
(state1 (cdr input)))
|
||||
(and (char=? (car input) #\c)
|
||||
(state1 input))
|
||||
(state2 input))))
|
||||
|
||||
(define (state2 input)
|
||||
(and (not (null? input))
|
||||
(char=? (car input) #\b)
|
||||
(not (null? (cdr input)))
|
||||
(char=? (cadr input) #\c)
|
||||
(not (null? (cddr input)))
|
||||
(char=? (caddr input) #\d)
|
||||
'state2))
|
||||
|
||||
(define (state3 input)
|
||||
(and (not (null? input))
|
||||
(or (and (char=? (car input) #\a)
|
||||
(state3 (cdr input)))
|
||||
(state4 input))))
|
||||
|
||||
(define (state4 input)
|
||||
(and (not (null? input))
|
||||
(char=? (car input) #\b)
|
||||
(not (null? (cdr input)))
|
||||
(char=? (cadr input) #\c)
|
||||
'state4))
|
||||
|
||||
(or (state0 input)
|
||||
'fail))
|
||||
|
||||
(time (let ((input (string->list (string-append (make-string 133 #\a) "bc"))))
|
||||
(let loop ((n 150000))
|
||||
(if (zero? n)
|
||||
'done
|
||||
(begin
|
||||
(recursive-nfa input)
|
||||
(loop (- n 1)))))))
|
||||
|
||||
|
||||
|
1
benchmarks/gabriel/nothing.sch
Normal file
1
benchmarks/gabriel/nothing.sch
Normal file
|
@ -0,0 +1 @@
|
|||
(time 1)
|
36
benchmarks/gabriel/nqueens.sch
Normal file
36
benchmarks/gabriel/nqueens.sch
Normal file
|
@ -0,0 +1,36 @@
|
|||
;;; NQUEENS -- Compute number of solutions to 8-queens problem.
|
||||
;; 2006/08 -- renamed `try' to `try-it' to avoid Bigloo collision (mflatt)
|
||||
|
||||
(define trace? #f)
|
||||
|
||||
(define (nqueens n)
|
||||
|
||||
(define (one-to n)
|
||||
(let loop ((i n) (l '()))
|
||||
(if (= i 0) l (loop (- i 1) (cons i l)))))
|
||||
|
||||
(define (try-it x y z)
|
||||
(if (null? x)
|
||||
(if (null? y)
|
||||
(begin (if trace? (begin (write z) (newline))) 1)
|
||||
0)
|
||||
(+ (if (ok? (car x) 1 z)
|
||||
(try-it (append (cdr x) y) '() (cons (car x) z))
|
||||
0)
|
||||
(try-it (cdr x) (cons (car x) y) z))))
|
||||
|
||||
(define (ok? row dist placed)
|
||||
(if (null? placed)
|
||||
#t
|
||||
(and (not (= (car placed) (+ row dist)))
|
||||
(not (= (car placed) (- row dist)))
|
||||
(ok? row (+ dist 1) (cdr placed)))))
|
||||
|
||||
(try-it (one-to n) '() '()))
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 500) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (nqueens (if input 8 0)))))))
|
3508
benchmarks/gabriel/nucleic2.sch
Normal file
3508
benchmarks/gabriel/nucleic2.sch
Normal file
File diff suppressed because it is too large
Load diff
175
benchmarks/gabriel/paraffins.sch
Normal file
175
benchmarks/gabriel/paraffins.sch
Normal file
|
@ -0,0 +1,175 @@
|
|||
;;; PARAFFINS -- Compute how many paraffins exist with N carbon atoms.
|
||||
|
||||
(define (gen n)
|
||||
(let* ((n/2 (quotient n 2))
|
||||
(radicals (make-vector (+ n/2 1) '(H))))
|
||||
|
||||
(define (rads-of-size n)
|
||||
(let loop1 ((ps
|
||||
(three-partitions (- n 1)))
|
||||
(lst
|
||||
'()))
|
||||
(if (null? ps)
|
||||
lst
|
||||
(let* ((p (car ps))
|
||||
(nc1 (vector-ref p 0))
|
||||
(nc2 (vector-ref p 1))
|
||||
(nc3 (vector-ref p 2)))
|
||||
(let loop2 ((rads1
|
||||
(vector-ref radicals nc1))
|
||||
(lst
|
||||
(loop1 (cdr ps)
|
||||
lst)))
|
||||
(if (null? rads1)
|
||||
lst
|
||||
(let loop3 ((rads2
|
||||
(if (= nc1 nc2)
|
||||
rads1
|
||||
(vector-ref radicals nc2)))
|
||||
(lst
|
||||
(loop2 (cdr rads1)
|
||||
lst)))
|
||||
(if (null? rads2)
|
||||
lst
|
||||
(let loop4 ((rads3
|
||||
(if (= nc2 nc3)
|
||||
rads2
|
||||
(vector-ref radicals nc3)))
|
||||
(lst
|
||||
(loop3 (cdr rads2)
|
||||
lst)))
|
||||
(if (null? rads3)
|
||||
lst
|
||||
(cons (vector 'C
|
||||
(car rads1)
|
||||
(car rads2)
|
||||
(car rads3))
|
||||
(loop4 (cdr rads3)
|
||||
lst))))))))))))
|
||||
|
||||
(define (bcp-generator j)
|
||||
(if (odd? j)
|
||||
'()
|
||||
(let loop1 ((rads1
|
||||
(vector-ref radicals (quotient j 2)))
|
||||
(lst
|
||||
'()))
|
||||
(if (null? rads1)
|
||||
lst
|
||||
(let loop2 ((rads2
|
||||
rads1)
|
||||
(lst
|
||||
(loop1 (cdr rads1)
|
||||
lst)))
|
||||
(if (null? rads2)
|
||||
lst
|
||||
(cons (vector 'BCP
|
||||
(car rads1)
|
||||
(car rads2))
|
||||
(loop2 (cdr rads2)
|
||||
lst))))))))
|
||||
|
||||
(define (ccp-generator j)
|
||||
(let loop1 ((ps
|
||||
(four-partitions (- j 1)))
|
||||
(lst
|
||||
'()))
|
||||
(if (null? ps)
|
||||
lst
|
||||
(let* ((p (car ps))
|
||||
(nc1 (vector-ref p 0))
|
||||
(nc2 (vector-ref p 1))
|
||||
(nc3 (vector-ref p 2))
|
||||
(nc4 (vector-ref p 3)))
|
||||
(let loop2 ((rads1
|
||||
(vector-ref radicals nc1))
|
||||
(lst
|
||||
(loop1 (cdr ps)
|
||||
lst)))
|
||||
(if (null? rads1)
|
||||
lst
|
||||
(let loop3 ((rads2
|
||||
(if (= nc1 nc2)
|
||||
rads1
|
||||
(vector-ref radicals nc2)))
|
||||
(lst
|
||||
(loop2 (cdr rads1)
|
||||
lst)))
|
||||
(if (null? rads2)
|
||||
lst
|
||||
(let loop4 ((rads3
|
||||
(if (= nc2 nc3)
|
||||
rads2
|
||||
(vector-ref radicals nc3)))
|
||||
(lst
|
||||
(loop3 (cdr rads2)
|
||||
lst)))
|
||||
(if (null? rads3)
|
||||
lst
|
||||
(let loop5 ((rads4
|
||||
(if (= nc3 nc4)
|
||||
rads3
|
||||
(vector-ref radicals nc4)))
|
||||
(lst
|
||||
(loop4 (cdr rads3)
|
||||
lst)))
|
||||
(if (null? rads4)
|
||||
lst
|
||||
(cons (vector 'CCP
|
||||
(car rads1)
|
||||
(car rads2)
|
||||
(car rads3)
|
||||
(car rads4))
|
||||
(loop5 (cdr rads4)
|
||||
lst))))))))))))))
|
||||
|
||||
(let loop ((i 1))
|
||||
(if (> i n/2)
|
||||
(vector (bcp-generator n)
|
||||
(ccp-generator n))
|
||||
(begin
|
||||
(vector-set! radicals i (rads-of-size i))
|
||||
(loop (+ i 1)))))))
|
||||
|
||||
(define (three-partitions m)
|
||||
(let loop1 ((lst '())
|
||||
(nc1 (quotient m 3)))
|
||||
(if (< nc1 0)
|
||||
lst
|
||||
(let loop2 ((lst lst)
|
||||
(nc2 (quotient (- m nc1) 2)))
|
||||
(if (< nc2 nc1)
|
||||
(loop1 lst
|
||||
(- nc1 1))
|
||||
(loop2 (cons (vector nc1 nc2 (- m (+ nc1 nc2))) lst)
|
||||
(- nc2 1)))))))
|
||||
|
||||
(define (four-partitions m)
|
||||
(let loop1 ((lst '())
|
||||
(nc1 (quotient m 4)))
|
||||
(if (< nc1 0)
|
||||
lst
|
||||
(let loop2 ((lst lst)
|
||||
(nc2 (quotient (- m nc1) 3)))
|
||||
(if (< nc2 nc1)
|
||||
(loop1 lst
|
||||
(- nc1 1))
|
||||
(let ((start (max nc2 (- (quotient (+ m 1) 2) (+ nc1 nc2)))))
|
||||
(let loop3 ((lst lst)
|
||||
(nc3 (quotient (- m (+ nc1 nc2)) 2)))
|
||||
(if (< nc3 start)
|
||||
(loop2 lst (- nc2 1))
|
||||
(loop3 (cons (vector nc1 nc2 nc3 (- m (+ nc1 (+ nc2 nc3)))) lst)
|
||||
(- nc3 1))))))))))
|
||||
|
||||
(define (nb n)
|
||||
(let ((x (gen n)))
|
||||
(+ (length (vector-ref x 0))
|
||||
(length (vector-ref x 1)))))
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 100) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (nb (if input 17 0)))))))
|
633
benchmarks/gabriel/peval.sch
Normal file
633
benchmarks/gabriel/peval.sch
Normal file
|
@ -0,0 +1,633 @@
|
|||
;;; PEVAL -- A simple partial evaluator for Scheme, written by Marc Feeley.
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
|
||||
; Utilities
|
||||
|
||||
(define (every? pred? l)
|
||||
(let loop ((l l))
|
||||
(or (null? l) (and (pred? (car l)) (loop (cdr l))))))
|
||||
|
||||
(define (some? pred? l)
|
||||
(let loop ((l l))
|
||||
(if (null? l) #f (or (pred? (car l)) (loop (cdr l))))))
|
||||
|
||||
(define (map2 f l1 l2)
|
||||
(let loop ((l1 l1) (l2 l2))
|
||||
(if (pair? l1)
|
||||
(cons (f (car l1) (car l2)) (loop (cdr l1) (cdr l2)))
|
||||
'())))
|
||||
|
||||
(define (get-last-pair l)
|
||||
(let loop ((l l))
|
||||
(let ((x (cdr l))) (if (pair? x) (loop x) l))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
;
|
||||
; The partial evaluator.
|
||||
|
||||
(define (partial-evaluate proc args)
|
||||
(peval (alphatize proc '()) args))
|
||||
|
||||
(define (alphatize exp env) ; return a copy of 'exp' where each bound var has
|
||||
(define (alpha exp) ; been renamed (to prevent aliasing problems)
|
||||
(cond ((const-expr? exp)
|
||||
(quot (const-value exp)))
|
||||
((symbol? exp)
|
||||
(let ((x (assq exp env))) (if x (cdr x) exp)))
|
||||
((or (eq? (car exp) 'if) (eq? (car exp) 'begin))
|
||||
(cons (car exp) (map alpha (cdr exp))))
|
||||
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
||||
(let ((new-env (new-variables (map car (cadr exp)) env)))
|
||||
(list (car exp)
|
||||
(map (lambda (x)
|
||||
(list (cdr (assq (car x) new-env))
|
||||
(if (eq? (car exp) 'let)
|
||||
(alpha (cadr x))
|
||||
(alphatize (cadr x) new-env))))
|
||||
(cadr exp))
|
||||
(alphatize (caddr exp) new-env))))
|
||||
((eq? (car exp) 'lambda)
|
||||
(let ((new-env (new-variables (cadr exp) env)))
|
||||
(list 'lambda
|
||||
(map (lambda (x) (cdr (assq x new-env))) (cadr exp))
|
||||
(alphatize (caddr exp) new-env))))
|
||||
(else
|
||||
(map alpha exp))))
|
||||
(alpha exp))
|
||||
|
||||
(define (const-expr? expr) ; is 'expr' a constant expression?
|
||||
(and (not (symbol? expr))
|
||||
(or (not (pair? expr))
|
||||
(eq? (car expr) 'quote))))
|
||||
|
||||
(define (const-value expr) ; return the value of a constant expression
|
||||
(if (pair? expr) ; then it must be a quoted constant
|
||||
(cadr expr)
|
||||
expr))
|
||||
|
||||
(define (quot val) ; make a quoted constant whose value is 'val'
|
||||
(list 'quote val))
|
||||
|
||||
(define (new-variables parms env)
|
||||
(append (map (lambda (x) (cons x (new-variable x))) parms) env))
|
||||
|
||||
(define *current-num* 0)
|
||||
|
||||
(define (new-variable name)
|
||||
(set! *current-num* (+ *current-num* 1))
|
||||
(string->symbol
|
||||
(string-append (symbol->string name)
|
||||
"_"
|
||||
(number->string *current-num*))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
;
|
||||
; (peval proc args) will transform a procedure that is known to be called
|
||||
; with constants as some of its arguments into a specialized procedure that
|
||||
; is 'equivalent' but accepts only the non-constant parameters. 'proc' is the
|
||||
; list representation of a lambda-expression and 'args' is a list of values,
|
||||
; one for each parameter of the lambda-expression. A special value (i.e.
|
||||
; 'not-constant') is used to indicate an argument that is not a constant.
|
||||
; The returned procedure is one that has as parameters the parameters of the
|
||||
; original procedure which are NOT passed constants. Constants will have been
|
||||
; substituted for the constant parameters that are referenced in the body
|
||||
; of the procedure.
|
||||
;
|
||||
; For example:
|
||||
;
|
||||
; (peval
|
||||
; '(lambda (x y z) (f z x y)) ; the procedure
|
||||
; (list 1 not-constant #t)) ; the knowledge about x, y and z
|
||||
;
|
||||
; will return: (lambda (y) (f '#t '1 y))
|
||||
|
||||
(define (peval proc args)
|
||||
(simplify!
|
||||
(let ((parms (cadr proc)) ; get the parameter list
|
||||
(body (caddr proc))) ; get the body of the procedure
|
||||
(list 'lambda
|
||||
(remove-constant parms args) ; remove the constant parameters
|
||||
(beta-subst ; in the body, replace variable refs to the constant
|
||||
body ; parameters by the corresponding constant
|
||||
(map2 (lambda (x y) (if (not-constant? y) '(()) (cons x (quot y))))
|
||||
parms
|
||||
args))))))
|
||||
|
||||
(define not-constant (list '?)) ; special value indicating non-constant parms.
|
||||
|
||||
(define (not-constant? x) (eq? x not-constant))
|
||||
|
||||
(define (remove-constant l a) ; remove from list 'l' all elements whose
|
||||
(cond ((null? l) ; corresponding element in 'a' is a constant
|
||||
'())
|
||||
((not-constant? (car a))
|
||||
(cons (car l) (remove-constant (cdr l) (cdr a))))
|
||||
(else
|
||||
(remove-constant (cdr l) (cdr a)))))
|
||||
|
||||
(define (extract-constant l a) ; extract from list 'l' all elements whose
|
||||
(cond ((null? l) ; corresponding element in 'a' is a constant
|
||||
'())
|
||||
((not-constant? (car a))
|
||||
(extract-constant (cdr l) (cdr a)))
|
||||
(else
|
||||
(cons (car l) (extract-constant (cdr l) (cdr a))))))
|
||||
|
||||
(define (beta-subst exp env) ; return a modified 'exp' where each var named in
|
||||
(define (bs exp) ; 'env' is replaced by the corresponding expr (it
|
||||
(cond ((const-expr? exp) ; is assumed that the code has been alphatized)
|
||||
(quot (const-value exp)))
|
||||
((symbol? exp)
|
||||
(let ((x (assq exp env)))
|
||||
(if x (cdr x) exp)))
|
||||
((or (eq? (car exp) 'if) (eq? (car exp) 'begin))
|
||||
(cons (car exp) (map bs (cdr exp))))
|
||||
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
||||
(list (car exp)
|
||||
(map (lambda (x) (list (car x) (bs (cadr x)))) (cadr exp))
|
||||
(bs (caddr exp))))
|
||||
((eq? (car exp) 'lambda)
|
||||
(list 'lambda
|
||||
(cadr exp)
|
||||
(bs (caddr exp))))
|
||||
(else
|
||||
(map bs exp))))
|
||||
(bs exp))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
;
|
||||
; The expression simplifier.
|
||||
|
||||
(define (simplify! exp) ; simplify the expression 'exp' destructively (it
|
||||
; is assumed that the code has been alphatized)
|
||||
(define (simp! where env)
|
||||
|
||||
(define (s! where)
|
||||
(let ((exp (car where)))
|
||||
|
||||
(cond ((const-expr? exp)) ; leave constants the way they are
|
||||
|
||||
((symbol? exp)) ; leave variable references the way they are
|
||||
|
||||
((eq? (car exp) 'if) ; dead code removal for conditionals
|
||||
(s! (cdr exp)) ; simplify the predicate
|
||||
(if (const-expr? (cadr exp)) ; is the predicate a constant?
|
||||
(begin
|
||||
(set-car! where
|
||||
(if (memq (const-value (cadr exp)) '(#f ())) ; false?
|
||||
(if (= (length exp) 3) ''() (cadddr exp))
|
||||
(caddr exp)))
|
||||
(s! where))
|
||||
(for-each! s! (cddr exp)))) ; simplify consequent and alt.
|
||||
|
||||
((eq? (car exp) 'begin)
|
||||
(for-each! s! (cdr exp))
|
||||
(let loop ((exps exp)) ; remove all useless expressions
|
||||
(if (not (null? (cddr exps))) ; not last expression?
|
||||
(let ((x (cadr exps)))
|
||||
(loop (if (or (const-expr? x)
|
||||
(symbol? x)
|
||||
(and (pair? x) (eq? (car x) 'lambda)))
|
||||
(begin (set-cdr! exps (cddr exps)) exps)
|
||||
(cdr exps))))))
|
||||
(if (null? (cddr exp)) ; only one expression in the begin?
|
||||
(set-car! where (cadr exp))))
|
||||
|
||||
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
||||
(let ((new-env (cons exp env)))
|
||||
(define (keep i)
|
||||
(if (>= i (length (cadar where)))
|
||||
'()
|
||||
(let* ((var (car (list-ref (cadar where) i)))
|
||||
(val (cadr (assq var (cadar where))))
|
||||
(refs (ref-count (car where) var))
|
||||
(self-refs (ref-count val var))
|
||||
(total-refs (- (car refs) (car self-refs)))
|
||||
(oper-refs (- (cadr refs) (cadr self-refs))))
|
||||
(cond ((= total-refs 0)
|
||||
(keep (+ i 1)))
|
||||
((or (const-expr? val)
|
||||
(symbol? val)
|
||||
(and (pair? val)
|
||||
(eq? (car val) 'lambda)
|
||||
(= total-refs 1)
|
||||
(= oper-refs 1)
|
||||
(= (car self-refs) 0))
|
||||
(and (caddr refs)
|
||||
(= total-refs 1)))
|
||||
(set-car! where
|
||||
(beta-subst (car where)
|
||||
(list (cons var val))))
|
||||
(keep (+ i 1)))
|
||||
(else
|
||||
(cons var (keep (+ i 1))))))))
|
||||
(simp! (cddr exp) new-env)
|
||||
(for-each! (lambda (x) (simp! (cdar x) new-env)) (cadr exp))
|
||||
(let ((to-keep (keep 0)))
|
||||
(if (< (length to-keep) (length (cadar where)))
|
||||
(begin
|
||||
(if (null? to-keep)
|
||||
(set-car! where (caddar where))
|
||||
(set-car! (cdar where)
|
||||
(map (lambda (v) (assq v (cadar where))) to-keep)))
|
||||
(s! where))
|
||||
(if (null? to-keep)
|
||||
(set-car! where (caddar where)))))))
|
||||
|
||||
((eq? (car exp) 'lambda)
|
||||
(simp! (cddr exp) (cons exp env)))
|
||||
|
||||
(else
|
||||
(for-each! s! exp)
|
||||
(cond ((symbol? (car exp)) ; is the operator position a var ref?
|
||||
(let ((frame (binding-frame (car exp) env)))
|
||||
(if frame ; is it a bound variable?
|
||||
(let ((proc (bound-expr (car exp) frame)))
|
||||
(if (and (pair? proc)
|
||||
(eq? (car proc) 'lambda)
|
||||
(some? const-expr? (cdr exp)))
|
||||
(let* ((args (arg-pattern (cdr exp)))
|
||||
(new-proc (peval proc args))
|
||||
(new-args (remove-constant (cdr exp) args)))
|
||||
(set-car! where
|
||||
(cons (add-binding new-proc frame (car exp))
|
||||
new-args)))))
|
||||
(set-car! where
|
||||
(constant-fold-global (car exp) (cdr exp))))))
|
||||
((not (pair? (car exp))))
|
||||
((eq? (caar exp) 'lambda)
|
||||
(set-car! where
|
||||
(list 'let
|
||||
(map2 list (cadar exp) (cdr exp))
|
||||
(caddar exp)))
|
||||
(s! where)))))))
|
||||
|
||||
(s! where))
|
||||
|
||||
(define (remove-empty-calls! where env)
|
||||
|
||||
(define (rec! where)
|
||||
(let ((exp (car where)))
|
||||
|
||||
(cond ((const-expr? exp))
|
||||
((symbol? exp))
|
||||
((eq? (car exp) 'if)
|
||||
(rec! (cdr exp))
|
||||
(rec! (cddr exp))
|
||||
(rec! (cdddr exp)))
|
||||
((eq? (car exp) 'begin)
|
||||
(for-each! rec! (cdr exp)))
|
||||
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
||||
(let ((new-env (cons exp env)))
|
||||
(remove-empty-calls! (cddr exp) new-env)
|
||||
(for-each! (lambda (x) (remove-empty-calls! (cdar x) new-env))
|
||||
(cadr exp))))
|
||||
((eq? (car exp) 'lambda)
|
||||
(rec! (cddr exp)))
|
||||
(else
|
||||
(for-each! rec! (cdr exp))
|
||||
(if (and (null? (cdr exp)) (symbol? (car exp)))
|
||||
(let ((frame (binding-frame (car exp) env)))
|
||||
(if frame ; is it a bound variable?
|
||||
(let ((proc (bound-expr (car exp) frame)))
|
||||
(if (and (pair? proc)
|
||||
(eq? (car proc) 'lambda))
|
||||
(begin
|
||||
(set! changed? #t)
|
||||
(set-car! where (caddr proc))))))))))))
|
||||
|
||||
(rec! where))
|
||||
|
||||
(define changed? #f)
|
||||
|
||||
(let ((x (list exp)))
|
||||
(let loop ()
|
||||
(set! changed? #f)
|
||||
(simp! x '())
|
||||
(remove-empty-calls! x '())
|
||||
(if changed? (loop) (car x)))))
|
||||
|
||||
(define (ref-count exp var) ; compute how many references to variable 'var'
|
||||
(let ((total 0) ; are contained in 'exp'
|
||||
(oper 0)
|
||||
(always-evaled #t))
|
||||
(define (rc exp ae)
|
||||
(cond ((const-expr? exp))
|
||||
((symbol? exp)
|
||||
(if (eq? exp var)
|
||||
(begin
|
||||
(set! total (+ total 1))
|
||||
(set! always-evaled (and ae always-evaled)))))
|
||||
((eq? (car exp) 'if)
|
||||
(rc (cadr exp) ae)
|
||||
(for-each (lambda (x) (rc x #f)) (cddr exp)))
|
||||
((eq? (car exp) 'begin)
|
||||
(for-each (lambda (x) (rc x ae)) (cdr exp)))
|
||||
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
||||
(for-each (lambda (x) (rc (cadr x) ae)) (cadr exp))
|
||||
(rc (caddr exp) ae))
|
||||
((eq? (car exp) 'lambda)
|
||||
(rc (caddr exp) #f))
|
||||
(else
|
||||
(for-each (lambda (x) (rc x ae)) exp)
|
||||
(if (symbol? (car exp))
|
||||
(if (eq? (car exp) var) (set! oper (+ oper 1)))))))
|
||||
(rc exp #t)
|
||||
(list total oper always-evaled)))
|
||||
|
||||
(define (binding-frame var env)
|
||||
(cond ((null? env) #f)
|
||||
((or (eq? (caar env) 'let) (eq? (caar env) 'letrec))
|
||||
(if (assq var (cadar env)) (car env) (binding-frame var (cdr env))))
|
||||
((eq? (caar env) 'lambda)
|
||||
(if (memq var (cadar env)) (car env) (binding-frame var (cdr env))))
|
||||
(else
|
||||
'(fatal-error "ill-formed environment"))))
|
||||
|
||||
(define (bound-expr var frame)
|
||||
(cond ((or (eq? (car frame) 'let) (eq? (car frame) 'letrec))
|
||||
(cadr (assq var (cadr frame))))
|
||||
((eq? (car frame) 'lambda)
|
||||
not-constant)
|
||||
(else
|
||||
'(fatal-error "ill-formed frame"))))
|
||||
|
||||
(define (add-binding val frame name)
|
||||
(define (find-val val bindings)
|
||||
(cond ((null? bindings) #f)
|
||||
((equal? val (cadar bindings)) ; *kludge* equal? is not exactly what
|
||||
(caar bindings)) ; we want...
|
||||
(else
|
||||
(find-val val (cdr bindings)))))
|
||||
(or (find-val val (cadr frame))
|
||||
(let ((var (new-variable name)))
|
||||
(set-cdr! (get-last-pair (cadr frame)) (list (list var val)))
|
||||
var)))
|
||||
|
||||
(define (for-each! proc! l) ; call proc! on each CONS CELL in the list 'l'
|
||||
(if (not (null? l))
|
||||
(begin (proc! l) (for-each! proc! (cdr l)))))
|
||||
|
||||
(define (arg-pattern exps) ; return the argument pattern (i.e. the list of
|
||||
(if (null? exps) ; constants in 'exps' but with the not-constant
|
||||
'() ; value wherever the corresponding expression in
|
||||
(cons (if (const-expr? (car exps)) ; 'exps' is not a constant)
|
||||
(const-value (car exps))
|
||||
not-constant)
|
||||
(arg-pattern (cdr exps)))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
;
|
||||
; Knowledge about primitive procedures.
|
||||
|
||||
(define *primitives*
|
||||
(list
|
||||
(cons 'car (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(pair? (car args))
|
||||
(quot (car (car args))))))
|
||||
(cons 'cdr (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(pair? (car args))
|
||||
(quot (cdr (car args))))))
|
||||
(cons '+ (lambda (args)
|
||||
(and (every? number? args)
|
||||
(quot (sum args 0)))))
|
||||
(cons '* (lambda (args)
|
||||
(and (every? number? args)
|
||||
(quot (product args 1)))))
|
||||
(cons '- (lambda (args)
|
||||
(and (> (length args) 0)
|
||||
(every? number? args)
|
||||
(quot (if (null? (cdr args))
|
||||
(- (car args))
|
||||
(- (car args) (sum (cdr args) 0)))))))
|
||||
(cons '/ (lambda (args)
|
||||
(and (> (length args) 1)
|
||||
(every? number? args)
|
||||
(quot (if (null? (cdr args))
|
||||
(/ (car args))
|
||||
(/ (car args) (product (cdr args) 1)))))))
|
||||
(cons '< (lambda (args)
|
||||
(and (= (length args) 2)
|
||||
(every? number? args)
|
||||
(quot (< (car args) (cadr args))))))
|
||||
(cons '= (lambda (args)
|
||||
(and (= (length args) 2)
|
||||
(every? number? args)
|
||||
(quot (= (car args) (cadr args))))))
|
||||
(cons '> (lambda (args)
|
||||
(and (= (length args) 2)
|
||||
(every? number? args)
|
||||
(quot (> (car args) (cadr args))))))
|
||||
(cons 'eq? (lambda (args)
|
||||
(and (= (length args) 2)
|
||||
(quot (eq? (car args) (cadr args))))))
|
||||
(cons 'not (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(quot (not (car args))))))
|
||||
(cons 'null? (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(quot (null? (car args))))))
|
||||
(cons 'pair? (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(quot (pair? (car args))))))
|
||||
(cons 'symbol? (lambda (args)
|
||||
(and (= (length args) 1)
|
||||
(quot (symbol? (car args))))))
|
||||
)
|
||||
)
|
||||
|
||||
(define (sum lst n)
|
||||
(if (null? lst)
|
||||
n
|
||||
(sum (cdr lst) (+ n (car lst)))))
|
||||
|
||||
(define (product lst n)
|
||||
(if (null? lst)
|
||||
n
|
||||
(product (cdr lst) (* n (car lst)))))
|
||||
|
||||
(define (reduce-global name args)
|
||||
(let ((x (assq name *primitives*)))
|
||||
(and x ((cdr x) args))))
|
||||
|
||||
(define (constant-fold-global name exprs)
|
||||
|
||||
(define (flatten args op)
|
||||
(cond ((null? args)
|
||||
'())
|
||||
((and (pair? (car args)) (eq? (caar args) op))
|
||||
(append (flatten (cdar args) op) (flatten (cdr args) op)))
|
||||
(else
|
||||
(cons (car args) (flatten (cdr args) op)))))
|
||||
|
||||
(let ((args (if (or (eq? name '+) (eq? name '*)) ; associative ops
|
||||
(flatten exprs name)
|
||||
exprs)))
|
||||
(or (and (every? const-expr? args)
|
||||
(reduce-global name (map const-value args)))
|
||||
(let ((pattern (arg-pattern args)))
|
||||
(let ((non-const (remove-constant args pattern))
|
||||
(const (map const-value (extract-constant args pattern))))
|
||||
(cond ((eq? name '+) ; + is commutative
|
||||
(let ((x (reduce-global '+ const)))
|
||||
(if x
|
||||
(let ((y (const-value x)))
|
||||
(cons '+
|
||||
(if (= y 0) non-const (cons x non-const))))
|
||||
(cons name args))))
|
||||
((eq? name '*) ; * is commutative
|
||||
(let ((x (reduce-global '* const)))
|
||||
(if x
|
||||
(let ((y (const-value x)))
|
||||
(cons '*
|
||||
(if (= y 1) non-const (cons x non-const))))
|
||||
(cons name args))))
|
||||
((eq? name 'cons)
|
||||
(cond ((and (const-expr? (cadr args))
|
||||
(null? (const-value (cadr args))))
|
||||
(list 'list (car args)))
|
||||
((and (pair? (cadr args))
|
||||
(eq? (car (cadr args)) 'list))
|
||||
(cons 'list (cons (car args) (cdr (cadr args)))))
|
||||
(else
|
||||
(cons name args))))
|
||||
(else
|
||||
(cons name args))))))))
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
;
|
||||
; Examples:
|
||||
|
||||
(define (try-peval proc args)
|
||||
(partial-evaluate proc args))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example1
|
||||
'(lambda (a b c)
|
||||
(if (null? a) b (+ (car a) c))))
|
||||
|
||||
;(try-peval example1 (list '(10 11) not-constant '1))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example2
|
||||
'(lambda (x y)
|
||||
(let ((q (lambda (a b) (if (< a 0) b (- 10 b)))))
|
||||
(if (< x 0) (q (- y) (- x)) (q y x)))))
|
||||
|
||||
;(try-peval example2 (list not-constant '1))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example3
|
||||
'(lambda (l n)
|
||||
(letrec ((add-list
|
||||
(lambda (l n)
|
||||
(if (null? l)
|
||||
'()
|
||||
(cons (+ (car l) n) (add-list (cdr l) n))))))
|
||||
(add-list l n))))
|
||||
|
||||
;(try-peval example3 (list not-constant '1))
|
||||
|
||||
;(try-peval example3 (list '(1 2 3) not-constant))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example4
|
||||
'(lambda (exp env)
|
||||
(letrec ((eval
|
||||
(lambda (exp env)
|
||||
(letrec ((eval-list
|
||||
(lambda (l env)
|
||||
(if (null? l)
|
||||
'()
|
||||
(cons (eval (car l) env)
|
||||
(eval-list (cdr l) env))))))
|
||||
(if (symbol? exp) (lookup exp env)
|
||||
(if (not (pair? exp)) exp
|
||||
(if (eq? (car exp) 'quote) (car (cdr exp))
|
||||
(apply (eval (car exp) env)
|
||||
(eval-list (cdr exp) env)))))))))
|
||||
(eval exp env))))
|
||||
|
||||
;(try-peval example4 (list 'x not-constant))
|
||||
|
||||
;(try-peval example4 (list '(f 1 2 3) not-constant))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example5
|
||||
'(lambda (a b)
|
||||
(letrec ((funct
|
||||
(lambda (x)
|
||||
(+ x b (if (< x 1) 0 (funct (- x 1)))))))
|
||||
(funct a))))
|
||||
|
||||
;(try-peval example5 (list '5 not-constant))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example6
|
||||
'(lambda ()
|
||||
(letrec ((fib
|
||||
(lambda (x)
|
||||
(if (< x 2) x (+ (fib (- x 1)) (fib (- x 2)))))))
|
||||
(fib 10))))
|
||||
|
||||
;(try-peval example6 '())
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example7
|
||||
'(lambda (input)
|
||||
(letrec ((copy (lambda (in)
|
||||
(if (pair? in)
|
||||
(cons (copy (car in))
|
||||
(copy (cdr in)))
|
||||
in))))
|
||||
(copy input))))
|
||||
|
||||
;(try-peval example7 (list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define example8
|
||||
'(lambda (input)
|
||||
(letrec ((reverse (lambda (in result)
|
||||
(if (pair? in)
|
||||
(reverse (cdr in) (cons (car in) result))
|
||||
result))))
|
||||
(reverse input '()))))
|
||||
|
||||
;(try-peval example8 (list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
||||
|
||||
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
||||
|
||||
(define (test init)
|
||||
(set! *current-num* init)
|
||||
(list (try-peval example1 (list '(10 11) not-constant '1))
|
||||
(try-peval example2 (list not-constant '1))
|
||||
(try-peval example3 (list not-constant '1))
|
||||
(try-peval example3 (list '(1 2 3) not-constant))
|
||||
(try-peval example4 (list 'x not-constant))
|
||||
(try-peval example4 (list '(f 1 2 3) not-constant))
|
||||
(try-peval example5 (list '5 not-constant))
|
||||
(try-peval example6 '())
|
||||
(try-peval
|
||||
example7
|
||||
(list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
||||
(try-peval
|
||||
example8
|
||||
(list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))))
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 60) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (test (if input 0 17)))))))
|
171
benchmarks/gabriel/puzzle.sch
Normal file
171
benchmarks/gabriel/puzzle.sch
Normal file
|
@ -0,0 +1,171 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: puzzle.sch
|
||||
; Description: PUZZLE benchmark
|
||||
; Author: Richard Gabriel, after Forrest Baskett
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 14:20:23 (Bob Shaw)
|
||||
; 11-Aug-87 (Will Clinger)
|
||||
; 22-Jan-88 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
(define (iota n)
|
||||
(do ((n n (- n 1))
|
||||
(list '() (cons (- n 1) list)))
|
||||
((zero? n) list)))
|
||||
|
||||
;;; PUZZLE -- Forest Baskett's Puzzle benchmark, originally written in Pascal.
|
||||
|
||||
(define size 1048575)
|
||||
(define classmax 3)
|
||||
(define typemax 12)
|
||||
|
||||
(define *iii* 0)
|
||||
(define *kount* 0)
|
||||
(define *d* 8)
|
||||
|
||||
(define *piececount* (make-vector (+ classmax 1) 0))
|
||||
(define *class* (make-vector (+ typemax 1) 0))
|
||||
(define *piecemax* (make-vector (+ typemax 1) 0))
|
||||
(define *puzzle* (make-vector (+ size 1)))
|
||||
(define *p* (make-vector (+ typemax 1)))
|
||||
(define nothing
|
||||
(for-each (lambda (i) (vector-set! *p* i (make-vector (+ size 1))))
|
||||
(iota (+ typemax 1))))
|
||||
|
||||
(define (fit i j)
|
||||
(let ((end (vector-ref *piecemax* i)))
|
||||
(do ((k 0 (+ k 1)))
|
||||
((or (> k end)
|
||||
(and (vector-ref (vector-ref *p* i) k)
|
||||
(vector-ref *puzzle* (+ j k))))
|
||||
(if (> k end) #t #f)))))
|
||||
|
||||
(define (place i j)
|
||||
(let ((end (vector-ref *piecemax* i)))
|
||||
(do ((k 0 (+ k 1)))
|
||||
((> k end))
|
||||
(cond ((vector-ref (vector-ref *p* i) k)
|
||||
(vector-set! *puzzle* (+ j k) #t)
|
||||
#t)))
|
||||
(vector-set! *piececount*
|
||||
(vector-ref *class* i)
|
||||
(- (vector-ref *piececount* (vector-ref *class* i)) 1))
|
||||
(do ((k j (+ k 1)))
|
||||
((or (> k size) (not (vector-ref *puzzle* k)))
|
||||
; (newline)
|
||||
; (display "*Puzzle* filled")
|
||||
(if (> k size) 0 k)))))
|
||||
|
||||
(define (puzzle-remove i j)
|
||||
(let ((end (vector-ref *piecemax* i)))
|
||||
(do ((k 0 (+ k 1)))
|
||||
((> k end))
|
||||
(cond ((vector-ref (vector-ref *p* i) k)
|
||||
(vector-set! *puzzle* (+ j k) #f)
|
||||
#f)))
|
||||
(vector-set! *piececount*
|
||||
(vector-ref *class* i)
|
||||
(+ (vector-ref *piececount* (vector-ref *class* i)) 1))))
|
||||
|
||||
|
||||
(define (trial j)
|
||||
(let ((k 0))
|
||||
(call-with-current-continuation
|
||||
(lambda (return)
|
||||
(do ((i 0 (+ i 1)))
|
||||
((> i typemax) (set! *kount* (+ *kount* 1)) '())
|
||||
(cond
|
||||
((not
|
||||
(zero?
|
||||
(vector-ref *piececount* (vector-ref *class* i))))
|
||||
(cond
|
||||
((fit i j)
|
||||
(set! k (place i j))
|
||||
(cond
|
||||
((or (trial k) (zero? k))
|
||||
;(trial-output (+ i 1) (+ k 1))
|
||||
(set! *kount* (+ *kount* 1))
|
||||
(return #t))
|
||||
(else (puzzle-remove i j))))))))))))
|
||||
|
||||
(define (trial-output x y)
|
||||
(newline)
|
||||
(display (string-append "Piece "
|
||||
(number->string x '(int))
|
||||
" at "
|
||||
(number->string y '(int))
|
||||
".")))
|
||||
|
||||
(define (definePiece iclass ii jj kk)
|
||||
(let ((index 0))
|
||||
(do ((i 0 (+ i 1)))
|
||||
((> i ii))
|
||||
(do ((j 0 (+ j 1)))
|
||||
((> j jj))
|
||||
(do ((k 0 (+ k 1)))
|
||||
((> k kk))
|
||||
(set! index (+ i (* *d* (+ j (* *d* k)))))
|
||||
(vector-set! (vector-ref *p* *iii*) index #t))))
|
||||
(vector-set! *class* *iii* iclass)
|
||||
(vector-set! *piecemax* *iii* index)
|
||||
(cond ((not (= *iii* typemax))
|
||||
(set! *iii* (+ *iii* 1))))))
|
||||
|
||||
(define (start)
|
||||
(do ((m 0 (+ m 1)))
|
||||
((> m size))
|
||||
(vector-set! *puzzle* m #t))
|
||||
(do ((i 1 (+ i 1)))
|
||||
((> i 5))
|
||||
(do ((j 1 (+ j 1)))
|
||||
((> j 5))
|
||||
(do ((k 1 (+ k 1)))
|
||||
((> k 5))
|
||||
(vector-set! *puzzle* (+ i (* *d* (+ j (* *d* k)))) #f))))
|
||||
(do ((i 0 (+ i 1)))
|
||||
((> i typemax))
|
||||
(do ((m 0 (+ m 1)))
|
||||
((> m size))
|
||||
(vector-set! (vector-ref *p* i) m #f)))
|
||||
(set! *iii* 0)
|
||||
(definePiece 0 3 1 0)
|
||||
(definePiece 0 1 0 3)
|
||||
(definePiece 0 0 3 1)
|
||||
(definePiece 0 1 3 0)
|
||||
(definePiece 0 3 0 1)
|
||||
(definePiece 0 0 1 3)
|
||||
|
||||
(definePiece 1 2 0 0)
|
||||
(definePiece 1 0 2 0)
|
||||
(definePiece 1 0 0 2)
|
||||
|
||||
(definePiece 2 1 1 0)
|
||||
(definePiece 2 1 0 1)
|
||||
(definePiece 2 0 1 1)
|
||||
|
||||
(definePiece 3 1 1 1)
|
||||
|
||||
(vector-set! *piececount* 0 13)
|
||||
(vector-set! *piececount* 1 3)
|
||||
(vector-set! *piececount* 2 1)
|
||||
(vector-set! *piececount* 3 1)
|
||||
(let ((m (+ (* *d* (+ *d* 1)) 1))
|
||||
(n 0))
|
||||
(cond ((fit 0 m) (set! n (place 0 m)))
|
||||
(else (begin (newline) (display "Error."))))
|
||||
(cond ((trial n)
|
||||
(begin (newline)
|
||||
(display "Success in ")
|
||||
(write *kount*)
|
||||
(display " trials.")
|
||||
(newline)
|
||||
'ok))
|
||||
(else (begin (newline) (display "Failure."))))))
|
||||
|
||||
;;; call: (start)
|
||||
|
||||
(time (start))
|
||||
|
||||
|
16
benchmarks/gabriel/run.sh
Executable file
16
benchmarks/gabriel/run.sh
Executable file
|
@ -0,0 +1,16 @@
|
|||
#!/bin/sh
|
||||
|
||||
BENCHDIR=$(dirname $0)
|
||||
if [ "${BENCHDIR%%/*}" == "." ]; then
|
||||
BENCHDIR=$(pwd)${BENCHDIR#.}
|
||||
fi
|
||||
CHIBIHOME=${BENCHDIR%%/benchmarks/gabriel}
|
||||
CHIBI="${CHIBI:-${CHIBIHOME}/chibi-scheme} -I$CHIBIHOME"
|
||||
|
||||
cd $BENCHDIR
|
||||
for t in *.sch; do
|
||||
echo "${t%%.sch}"
|
||||
LD_LIBRARY_PATH="$CHIBIHOME" DYLD_LIBRARY_PATH="$CHIBIHOME" \
|
||||
$CHIBI -I"$CHIBIHOME/lib" -lchibi-prelude.scm $t
|
||||
done
|
||||
cd -
|
774
benchmarks/gabriel/sboyer.sch
Normal file
774
benchmarks/gabriel/sboyer.sch
Normal file
|
@ -0,0 +1,774 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: sboyer.sch
|
||||
; Description: The Boyer benchmark
|
||||
; Author: Bob Boyer
|
||||
; Created: 5-Apr-85
|
||||
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
|
||||
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
|
||||
; rewrote to eliminate property lists, and added
|
||||
; a scaling parameter suggested by Bob Boyer)
|
||||
; 19-Mar-99 (Will Clinger -- cleaned up comments)
|
||||
; 4-Apr-01 (Will Clinger -- changed four 1- symbols to sub1)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; SBOYER -- Logic programming benchmark, originally written by Bob Boyer.
|
||||
;;; Much less CONS-intensive than NBOYER because it uses Henry Baker's
|
||||
;;; "sharing cons".
|
||||
|
||||
; Note: The version of this benchmark that appears in Dick Gabriel's book
|
||||
; contained several bugs that are corrected here. These bugs are discussed
|
||||
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
|
||||
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
|
||||
;
|
||||
; The benchmark now returns a boolean result.
|
||||
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
|
||||
; in Common Lisp)
|
||||
; ONE-WAY-UNIFY1 now treats numbers correctly
|
||||
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
|
||||
; Rule 19 has been corrected (this rule was not touched by the original
|
||||
; benchmark, but is used by this version)
|
||||
; Rules 84 and 101 have been corrected (but these rules are never touched
|
||||
; by the benchmark)
|
||||
;
|
||||
; According to Baker, these bug fixes make the benchmark 10-25% slower.
|
||||
; Please do not compare the timings from this benchmark against those of
|
||||
; the original benchmark.
|
||||
;
|
||||
; This version of the benchmark also prints the number of rewrites as a sanity
|
||||
; check, because it is too easy for a buggy version to return the correct
|
||||
; boolean result. The correct number of rewrites is
|
||||
;
|
||||
; n rewrites peak live storage (approximate, in bytes)
|
||||
; 0 95024
|
||||
; 1 591777
|
||||
; 2 1813975
|
||||
; 3 5375678
|
||||
; 4 16445406
|
||||
; 5 51507739
|
||||
|
||||
; Sboyer is a 2-phase benchmark.
|
||||
; The first phase attaches lemmas to symbols. This phase is not timed,
|
||||
; but it accounts for very little of the runtime anyway.
|
||||
; The second phase creates the test problem, and tests to see
|
||||
; whether it is implied by the lemmas.
|
||||
|
||||
(define (sboyer-benchmark . args)
|
||||
(let ((n (if (null? args) 0 (car args))))
|
||||
(setup-boyer)
|
||||
(time (test-boyer n))))
|
||||
|
||||
(define (setup-boyer) #t) ; assigned below
|
||||
(define (test-boyer) #t) ; assigned below
|
||||
|
||||
(define (id x) x)
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The first phase.
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; In the original benchmark, it stored a list of lemmas on the
|
||||
; property lists of symbols.
|
||||
; In the new benchmark, it maintains an association list of
|
||||
; symbols and symbol-records, and stores the list of lemmas
|
||||
; within the symbol-records.
|
||||
|
||||
(let ()
|
||||
|
||||
(define (setup)
|
||||
(add-lemma-lst
|
||||
(quote ((equal (compile form)
|
||||
(reverse (codegen (optimize form)
|
||||
(nil))))
|
||||
(equal (eqp x y)
|
||||
(equal (fix x)
|
||||
(fix y)))
|
||||
(equal (greaterp x y)
|
||||
(lessp y x))
|
||||
(equal (lesseqp x y)
|
||||
(not (lessp y x)))
|
||||
(equal (greatereqp x y)
|
||||
(not (lessp x y)))
|
||||
(equal (boolean x)
|
||||
(or (equal x (t))
|
||||
(equal x (f))))
|
||||
(equal (iff x y)
|
||||
(and (implies x y)
|
||||
(implies y x)))
|
||||
(equal (even1 x)
|
||||
(if (zerop x)
|
||||
(t)
|
||||
(odd (sub1 x))))
|
||||
(equal (countps- l pred)
|
||||
(countps-loop l pred (zero)))
|
||||
(equal (fact- i)
|
||||
(fact-loop i 1))
|
||||
(equal (reverse- x)
|
||||
(reverse-loop x (nil)))
|
||||
(equal (divides x y)
|
||||
(zerop (remainder y x)))
|
||||
(equal (assume-true var alist)
|
||||
(cons (cons var (t))
|
||||
alist))
|
||||
(equal (assume-false var alist)
|
||||
(cons (cons var (f))
|
||||
alist))
|
||||
(equal (tautology-checker x)
|
||||
(tautologyp (normalize x)
|
||||
(nil)))
|
||||
(equal (falsify x)
|
||||
(falsify1 (normalize x)
|
||||
(nil)))
|
||||
(equal (prime x)
|
||||
(and (not (zerop x))
|
||||
(not (equal x (add1 (zero))))
|
||||
(prime1 x (sub1 x))))
|
||||
(equal (and p q)
|
||||
(if p (if q (t)
|
||||
(f))
|
||||
(f)))
|
||||
(equal (or p q)
|
||||
(if p (t)
|
||||
(if q (t)
|
||||
(f))))
|
||||
(equal (not p)
|
||||
(if p (f)
|
||||
(t)))
|
||||
(equal (implies p q)
|
||||
(if p (if q (t)
|
||||
(f))
|
||||
(t)))
|
||||
(equal (fix x)
|
||||
(if (numberp x)
|
||||
x
|
||||
(zero)))
|
||||
(equal (if (if a b c)
|
||||
d e)
|
||||
(if a (if b d e)
|
||||
(if c d e)))
|
||||
(equal (zerop x)
|
||||
(or (equal x (zero))
|
||||
(not (numberp x))))
|
||||
(equal (plus (plus x y)
|
||||
z)
|
||||
(plus x (plus y z)))
|
||||
(equal (equal (plus a b)
|
||||
(zero))
|
||||
(and (zerop a)
|
||||
(zerop b)))
|
||||
(equal (difference x x)
|
||||
(zero))
|
||||
(equal (equal (plus a b)
|
||||
(plus a c))
|
||||
(equal (fix b)
|
||||
(fix c)))
|
||||
(equal (equal (zero)
|
||||
(difference x y))
|
||||
(not (lessp y x)))
|
||||
(equal (equal x (difference x y))
|
||||
(and (numberp x)
|
||||
(or (equal x (zero))
|
||||
(zerop y))))
|
||||
(equal (meaning (plus-tree (append x y))
|
||||
a)
|
||||
(plus (meaning (plus-tree x)
|
||||
a)
|
||||
(meaning (plus-tree y)
|
||||
a)))
|
||||
(equal (meaning (plus-tree (plus-fringe x))
|
||||
a)
|
||||
(fix (meaning x a)))
|
||||
(equal (append (append x y)
|
||||
z)
|
||||
(append x (append y z)))
|
||||
(equal (reverse (append a b))
|
||||
(append (reverse b)
|
||||
(reverse a)))
|
||||
(equal (times x (plus y z))
|
||||
(plus (times x y)
|
||||
(times x z)))
|
||||
(equal (times (times x y)
|
||||
z)
|
||||
(times x (times y z)))
|
||||
(equal (equal (times x y)
|
||||
(zero))
|
||||
(or (zerop x)
|
||||
(zerop y)))
|
||||
(equal (exec (append x y)
|
||||
pds envrn)
|
||||
(exec y (exec x pds envrn)
|
||||
envrn))
|
||||
(equal (mc-flatten x y)
|
||||
(append (flatten x)
|
||||
y))
|
||||
(equal (member x (append a b))
|
||||
(or (member x a)
|
||||
(member x b)))
|
||||
(equal (member x (reverse y))
|
||||
(member x y))
|
||||
(equal (length (reverse x))
|
||||
(length x))
|
||||
(equal (member a (intersect b c))
|
||||
(and (member a b)
|
||||
(member a c)))
|
||||
(equal (nth (zero)
|
||||
i)
|
||||
(zero))
|
||||
(equal (exp i (plus j k))
|
||||
(times (exp i j)
|
||||
(exp i k)))
|
||||
(equal (exp i (times j k))
|
||||
(exp (exp i j)
|
||||
k))
|
||||
(equal (reverse-loop x y)
|
||||
(append (reverse x)
|
||||
y))
|
||||
(equal (reverse-loop x (nil))
|
||||
(reverse x))
|
||||
(equal (count-list z (sort-lp x y))
|
||||
(plus (count-list z x)
|
||||
(count-list z y)))
|
||||
(equal (equal (append a b)
|
||||
(append a c))
|
||||
(equal b c))
|
||||
(equal (plus (remainder x y)
|
||||
(times y (quotient x y)))
|
||||
(fix x))
|
||||
(equal (power-eval (big-plus1 l i base)
|
||||
base)
|
||||
(plus (power-eval l base)
|
||||
i))
|
||||
(equal (power-eval (big-plus x y i base)
|
||||
base)
|
||||
(plus i (plus (power-eval x base)
|
||||
(power-eval y base))))
|
||||
(equal (remainder y 1)
|
||||
(zero))
|
||||
(equal (lessp (remainder x y)
|
||||
y)
|
||||
(not (zerop y)))
|
||||
(equal (remainder x x)
|
||||
(zero))
|
||||
(equal (lessp (quotient i j)
|
||||
i)
|
||||
(and (not (zerop i))
|
||||
(or (zerop j)
|
||||
(not (equal j 1)))))
|
||||
(equal (lessp (remainder x y)
|
||||
x)
|
||||
(and (not (zerop y))
|
||||
(not (zerop x))
|
||||
(not (lessp x y))))
|
||||
(equal (power-eval (power-rep i base)
|
||||
base)
|
||||
(fix i))
|
||||
(equal (power-eval (big-plus (power-rep i base)
|
||||
(power-rep j base)
|
||||
(zero)
|
||||
base)
|
||||
base)
|
||||
(plus i j))
|
||||
(equal (gcd x y)
|
||||
(gcd y x))
|
||||
(equal (nth (append a b)
|
||||
i)
|
||||
(append (nth a i)
|
||||
(nth b (difference i (length a)))))
|
||||
(equal (difference (plus x y)
|
||||
x)
|
||||
(fix y))
|
||||
(equal (difference (plus y x)
|
||||
x)
|
||||
(fix y))
|
||||
(equal (difference (plus x y)
|
||||
(plus x z))
|
||||
(difference y z))
|
||||
(equal (times x (difference c w))
|
||||
(difference (times c x)
|
||||
(times w x)))
|
||||
(equal (remainder (times x z)
|
||||
z)
|
||||
(zero))
|
||||
(equal (difference (plus b (plus a c))
|
||||
a)
|
||||
(plus b c))
|
||||
(equal (difference (add1 (plus y z))
|
||||
z)
|
||||
(add1 y))
|
||||
(equal (lessp (plus x y)
|
||||
(plus x z))
|
||||
(lessp y z))
|
||||
(equal (lessp (times x z)
|
||||
(times y z))
|
||||
(and (not (zerop z))
|
||||
(lessp x y)))
|
||||
(equal (lessp y (plus x y))
|
||||
(not (zerop x)))
|
||||
(equal (gcd (times x z)
|
||||
(times y z))
|
||||
(times z (gcd x y)))
|
||||
(equal (value (normalize x)
|
||||
a)
|
||||
(value x a))
|
||||
(equal (equal (flatten x)
|
||||
(cons y (nil)))
|
||||
(and (nlistp x)
|
||||
(equal x y)))
|
||||
(equal (listp (gopher x))
|
||||
(listp x))
|
||||
(equal (samefringe x y)
|
||||
(equal (flatten x)
|
||||
(flatten y)))
|
||||
(equal (equal (greatest-factor x y)
|
||||
(zero))
|
||||
(and (or (zerop y)
|
||||
(equal y 1))
|
||||
(equal x (zero))))
|
||||
(equal (equal (greatest-factor x y)
|
||||
1)
|
||||
(equal x 1))
|
||||
(equal (numberp (greatest-factor x y))
|
||||
(not (and (or (zerop y)
|
||||
(equal y 1))
|
||||
(not (numberp x)))))
|
||||
(equal (times-list (append x y))
|
||||
(times (times-list x)
|
||||
(times-list y)))
|
||||
(equal (prime-list (append x y))
|
||||
(and (prime-list x)
|
||||
(prime-list y)))
|
||||
(equal (equal z (times w z))
|
||||
(and (numberp z)
|
||||
(or (equal z (zero))
|
||||
(equal w 1))))
|
||||
(equal (greatereqp x y)
|
||||
(not (lessp x y)))
|
||||
(equal (equal x (times x y))
|
||||
(or (equal x (zero))
|
||||
(and (numberp x)
|
||||
(equal y 1))))
|
||||
(equal (remainder (times y x)
|
||||
y)
|
||||
(zero))
|
||||
(equal (equal (times a b)
|
||||
1)
|
||||
(and (not (equal a (zero)))
|
||||
(not (equal b (zero)))
|
||||
(numberp a)
|
||||
(numberp b)
|
||||
(equal (sub1 a)
|
||||
(zero))
|
||||
(equal (sub1 b)
|
||||
(zero))))
|
||||
(equal (lessp (length (delete x l))
|
||||
(length l))
|
||||
(member x l))
|
||||
(equal (sort2 (delete x l))
|
||||
(delete x (sort2 l)))
|
||||
(equal (dsort x)
|
||||
(sort2 x))
|
||||
(equal (length (cons x1
|
||||
(cons x2
|
||||
(cons x3 (cons x4
|
||||
(cons x5
|
||||
(cons x6 x7)))))))
|
||||
(plus 6 (length x7)))
|
||||
(equal (difference (add1 (add1 x))
|
||||
2)
|
||||
(fix x))
|
||||
(equal (quotient (plus x (plus x y))
|
||||
2)
|
||||
(plus x (quotient y 2)))
|
||||
(equal (sigma (zero)
|
||||
i)
|
||||
(quotient (times i (add1 i))
|
||||
2))
|
||||
(equal (plus x (add1 y))
|
||||
(if (numberp y)
|
||||
(add1 (plus x y))
|
||||
(add1 x)))
|
||||
(equal (equal (difference x y)
|
||||
(difference z y))
|
||||
(if (lessp x y)
|
||||
(not (lessp y z))
|
||||
(if (lessp z y)
|
||||
(not (lessp y x))
|
||||
(equal (fix x)
|
||||
(fix z)))))
|
||||
(equal (meaning (plus-tree (delete x y))
|
||||
a)
|
||||
(if (member x y)
|
||||
(difference (meaning (plus-tree y)
|
||||
a)
|
||||
(meaning x a))
|
||||
(meaning (plus-tree y)
|
||||
a)))
|
||||
(equal (times x (add1 y))
|
||||
(if (numberp y)
|
||||
(plus x (times x y))
|
||||
(fix x)))
|
||||
(equal (nth (nil)
|
||||
i)
|
||||
(if (zerop i)
|
||||
(nil)
|
||||
(zero)))
|
||||
(equal (last (append a b))
|
||||
(if (listp b)
|
||||
(last b)
|
||||
(if (listp a)
|
||||
(cons (car (last a))
|
||||
b)
|
||||
b)))
|
||||
(equal (equal (lessp x y)
|
||||
z)
|
||||
(if (lessp x y)
|
||||
(equal (t) z)
|
||||
(equal (f) z)))
|
||||
(equal (assignment x (append a b))
|
||||
(if (assignedp x a)
|
||||
(assignment x a)
|
||||
(assignment x b)))
|
||||
(equal (car (gopher x))
|
||||
(if (listp x)
|
||||
(car (flatten x))
|
||||
(zero)))
|
||||
(equal (flatten (cdr (gopher x)))
|
||||
(if (listp x)
|
||||
(cdr (flatten x))
|
||||
(cons (zero)
|
||||
(nil))))
|
||||
(equal (quotient (times y x)
|
||||
y)
|
||||
(if (zerop y)
|
||||
(zero)
|
||||
(fix x)))
|
||||
(equal (get j (set i val mem))
|
||||
(if (eqp j i)
|
||||
val
|
||||
(get j mem)))))))
|
||||
|
||||
(define (add-lemma-lst lst)
|
||||
(cond ((null? lst)
|
||||
#t)
|
||||
(else (add-lemma (car lst))
|
||||
(add-lemma-lst (cdr lst)))))
|
||||
|
||||
(define (add-lemma term)
|
||||
(cond ((and (pair? term)
|
||||
(eq? (car term)
|
||||
(quote equal))
|
||||
(pair? (cadr term)))
|
||||
(put (car (cadr term))
|
||||
(quote lemmas)
|
||||
(cons
|
||||
(translate-term term)
|
||||
(get (car (cadr term)) (quote lemmas)))))
|
||||
(else (error "ADD-LEMMA did not like term: " term))))
|
||||
|
||||
; Translates a term by replacing its constructor symbols by symbol-records.
|
||||
|
||||
(define (translate-term term)
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (cons (symbol->symbol-record (car term))
|
||||
(translate-args (cdr term))))))
|
||||
|
||||
(define (translate-args lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (cons (translate-term (car lst))
|
||||
(translate-args (cdr lst))))))
|
||||
|
||||
; For debugging only, so the use of MAP does not change
|
||||
; the first-order character of the benchmark.
|
||||
|
||||
(define (untranslate-term term)
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (cons (get-name (car term))
|
||||
(map untranslate-term (cdr term))))))
|
||||
|
||||
; A symbol-record is represented as a vector with two fields:
|
||||
; the symbol (for debugging) and
|
||||
; the list of lemmas associated with the symbol.
|
||||
|
||||
(define (put sym property value)
|
||||
(put-lemmas! (symbol->symbol-record sym) value))
|
||||
|
||||
(define (get sym property)
|
||||
(get-lemmas (symbol->symbol-record sym)))
|
||||
|
||||
(define (symbol->symbol-record sym)
|
||||
(let ((x (assq sym *symbol-records-alist*)))
|
||||
(if x
|
||||
(cdr x)
|
||||
(let ((r (make-symbol-record sym)))
|
||||
(set! *symbol-records-alist*
|
||||
(cons (cons sym r)
|
||||
*symbol-records-alist*))
|
||||
r))))
|
||||
|
||||
; Association list of symbols and symbol-records.
|
||||
|
||||
(define *symbol-records-alist* '())
|
||||
|
||||
; A symbol-record is represented as a vector with two fields:
|
||||
; the symbol (for debugging) and
|
||||
; the list of lemmas associated with the symbol.
|
||||
|
||||
(define (make-symbol-record sym)
|
||||
(vector sym '()))
|
||||
|
||||
(define (put-lemmas! symbol-record lemmas)
|
||||
(vector-set! symbol-record 1 lemmas))
|
||||
|
||||
(define (get-lemmas symbol-record)
|
||||
(vector-ref symbol-record 1))
|
||||
|
||||
(define (get-name symbol-record)
|
||||
(vector-ref symbol-record 0))
|
||||
|
||||
(define (symbol-record-equal? r1 r2)
|
||||
(eq? r1 r2))
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;
|
||||
; The second phase.
|
||||
;
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
(define (test n)
|
||||
(let ((term
|
||||
(apply-subst
|
||||
(translate-alist
|
||||
(quote ((x f (plus (plus a b)
|
||||
(plus c (zero))))
|
||||
(y f (times (times a b)
|
||||
(plus c d)))
|
||||
(z f (reverse (append (append a b)
|
||||
(nil))))
|
||||
(u equal (plus a b)
|
||||
(difference x y))
|
||||
(w lessp (remainder a b)
|
||||
(member a (length b))))))
|
||||
(translate-term
|
||||
(do ((term
|
||||
(quote (implies (and (implies x y)
|
||||
(and (implies y z)
|
||||
(and (implies z u)
|
||||
(implies u w))))
|
||||
(implies x w)))
|
||||
(list 'or term '(f)))
|
||||
(n n (- n 1)))
|
||||
((zero? n) term))))))
|
||||
(tautp term)))
|
||||
|
||||
(define (translate-alist alist)
|
||||
(cond ((null? alist)
|
||||
'())
|
||||
(else (cons (cons (caar alist)
|
||||
(translate-term (cdar alist)))
|
||||
(translate-alist (cdr alist))))))
|
||||
|
||||
(define (apply-subst alist term)
|
||||
(cond ((not (pair? term))
|
||||
(let ((temp-temp (assq term alist)))
|
||||
(if temp-temp
|
||||
(cdr temp-temp)
|
||||
term)))
|
||||
(else (cons (car term)
|
||||
(apply-subst-lst alist (cdr term))))))
|
||||
|
||||
(define (apply-subst-lst alist lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (cons (apply-subst alist (car lst))
|
||||
(apply-subst-lst alist (cdr lst))))))
|
||||
|
||||
(define (tautp x)
|
||||
(tautologyp (rewrite x)
|
||||
'() '()))
|
||||
|
||||
(define (tautologyp x true-lst false-lst)
|
||||
(cond ((truep x true-lst)
|
||||
#t)
|
||||
((falsep x false-lst)
|
||||
#f)
|
||||
((not (pair? x))
|
||||
#f)
|
||||
((eq? (car x) if-constructor)
|
||||
(cond ((truep (cadr x)
|
||||
true-lst)
|
||||
(tautologyp (caddr x)
|
||||
true-lst false-lst))
|
||||
((falsep (cadr x)
|
||||
false-lst)
|
||||
(tautologyp (cadddr x)
|
||||
true-lst false-lst))
|
||||
(else (and (tautologyp (caddr x)
|
||||
(cons (cadr x)
|
||||
true-lst)
|
||||
false-lst)
|
||||
(tautologyp (cadddr x)
|
||||
true-lst
|
||||
(cons (cadr x)
|
||||
false-lst))))))
|
||||
(else #f)))
|
||||
|
||||
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
|
||||
|
||||
(define rewrite-count 0) ; sanity check
|
||||
|
||||
; The next procedure is Henry Baker's sharing CONS, which avoids
|
||||
; allocation if the result is already in hand.
|
||||
; The REWRITE and REWRITE-ARGS procedures have been modified to
|
||||
; use SCONS instead of CONS.
|
||||
|
||||
(define (scons x y original)
|
||||
(if (and (eq? x (car original))
|
||||
(eq? y (cdr original)))
|
||||
original
|
||||
(cons x y)))
|
||||
|
||||
(define (rewrite term)
|
||||
(set! rewrite-count (+ rewrite-count 1))
|
||||
(cond ((not (pair? term))
|
||||
term)
|
||||
(else (rewrite-with-lemmas (scons (car term)
|
||||
(rewrite-args (cdr term))
|
||||
term)
|
||||
(get-lemmas (car term))))))
|
||||
|
||||
(define (rewrite-args lst)
|
||||
(cond ((null? lst)
|
||||
'())
|
||||
(else (scons (rewrite (car lst))
|
||||
(rewrite-args (cdr lst))
|
||||
lst))))
|
||||
|
||||
(define (rewrite-with-lemmas term lst)
|
||||
(cond ((null? lst)
|
||||
term)
|
||||
((one-way-unify term (cadr (car lst)))
|
||||
(rewrite ( apply-subst unify-subst (caddr (car lst)))))
|
||||
(else (rewrite-with-lemmas term (cdr lst)))))
|
||||
|
||||
(define unify-subst '*)
|
||||
|
||||
(define (one-way-unify term1 term2)
|
||||
(begin (set! unify-subst '())
|
||||
(one-way-unify1 term1 term2)))
|
||||
|
||||
(define (one-way-unify1 term1 term2)
|
||||
(cond ((not (pair? term2))
|
||||
(let ((temp-temp (assq term2 unify-subst)))
|
||||
(cond (temp-temp
|
||||
(term-equal? term1 (cdr temp-temp)))
|
||||
((number? term2) ; This bug fix makes
|
||||
(equal? term1 term2)) ; nboyer 10-25% slower!
|
||||
(else
|
||||
(set! unify-subst (cons (cons term2 term1)
|
||||
unify-subst))
|
||||
#t))))
|
||||
((not (pair? term1))
|
||||
#f)
|
||||
((eq? (car term1)
|
||||
(car term2))
|
||||
(one-way-unify1-lst (cdr term1)
|
||||
(cdr term2)))
|
||||
(else #f)))
|
||||
|
||||
(define (one-way-unify1-lst lst1 lst2)
|
||||
(cond ((null? lst1)
|
||||
(null? lst2))
|
||||
((null? lst2)
|
||||
#f)
|
||||
((one-way-unify1 (car lst1)
|
||||
(car lst2))
|
||||
(one-way-unify1-lst (cdr lst1)
|
||||
(cdr lst2)))
|
||||
(else #f)))
|
||||
|
||||
(define (falsep x lst)
|
||||
(or (term-equal? x false-term)
|
||||
(term-member? x lst)))
|
||||
|
||||
(define (truep x lst)
|
||||
(or (term-equal? x true-term)
|
||||
(term-member? x lst)))
|
||||
|
||||
(define false-term '*) ; becomes (translate-term '(f))
|
||||
(define true-term '*) ; becomes (translate-term '(t))
|
||||
|
||||
; The next two procedures were in the original benchmark
|
||||
; but were never used.
|
||||
|
||||
(define (trans-of-implies n)
|
||||
(translate-term
|
||||
(list (quote implies)
|
||||
(trans-of-implies1 n)
|
||||
(list (quote implies)
|
||||
0 n))))
|
||||
|
||||
(define (trans-of-implies1 n)
|
||||
(cond ((equal? n 1)
|
||||
(list (quote implies)
|
||||
0 1))
|
||||
(else (list (quote and)
|
||||
(list (quote implies)
|
||||
(- n 1)
|
||||
n)
|
||||
(trans-of-implies1 (- n 1))))))
|
||||
|
||||
; Translated terms can be circular structures, which can't be
|
||||
; compared using Scheme's equal? and member procedures, so we
|
||||
; use these instead.
|
||||
|
||||
(define (term-equal? x y)
|
||||
(cond ((pair? x)
|
||||
(and (pair? y)
|
||||
(symbol-record-equal? (car x) (car y))
|
||||
(term-args-equal? (cdr x) (cdr y))))
|
||||
(else (equal? x y))))
|
||||
|
||||
(define (term-args-equal? lst1 lst2)
|
||||
(cond ((null? lst1)
|
||||
(null? lst2))
|
||||
((null? lst2)
|
||||
#f)
|
||||
((term-equal? (car lst1) (car lst2))
|
||||
(term-args-equal? (cdr lst1) (cdr lst2)))
|
||||
(else #f)))
|
||||
|
||||
(define (term-member? x lst)
|
||||
(cond ((null? lst)
|
||||
#f)
|
||||
((term-equal? x (car lst))
|
||||
#t)
|
||||
(else (term-member? x (cdr lst)))))
|
||||
|
||||
(set! setup-boyer
|
||||
(lambda ()
|
||||
(set! *symbol-records-alist* '())
|
||||
(set! if-constructor (symbol->symbol-record 'if))
|
||||
(set! false-term (translate-term '(f)))
|
||||
(set! true-term (translate-term '(t)))
|
||||
(setup)))
|
||||
|
||||
(set! test-boyer
|
||||
(lambda (n)
|
||||
(set! rewrite-count 0)
|
||||
(let ((answer (test n)))
|
||||
(write rewrite-count)
|
||||
(display " rewrites")
|
||||
(newline)
|
||||
(if answer
|
||||
rewrite-count
|
||||
#f)))))
|
||||
|
||||
(sboyer-benchmark 5)
|
1077
benchmarks/gabriel/scheme.sch
Normal file
1077
benchmarks/gabriel/scheme.sch
Normal file
File diff suppressed because it is too large
Load diff
1083
benchmarks/gabriel/scheme2.sch
Normal file
1083
benchmarks/gabriel/scheme2.sch
Normal file
File diff suppressed because it is too large
Load diff
147
benchmarks/gabriel/sort1.sch
Normal file
147
benchmarks/gabriel/sort1.sch
Normal file
|
@ -0,0 +1,147 @@
|
|||
; This benchmark uses the code for Larceny's standard sort procedure.
|
||||
;
|
||||
; Usage:
|
||||
; (sort-benchmark sorter n)
|
||||
;
|
||||
; where
|
||||
; sorter is a sort procedure (usually sort or sort1) whose calling
|
||||
; convention is compatible with Larceny's
|
||||
; n is the number of fixnums to sort
|
||||
|
||||
(define sort1
|
||||
(let ()
|
||||
|
||||
;;; File : sort.scm
|
||||
;;; Author : Richard A. O'Keefe (based on Prolog code by D.H.D.Warren)
|
||||
;;; Updated: 11 June 1991
|
||||
;
|
||||
; $Id: sort.sch 264 1998-12-14 16:44:08Z lth $
|
||||
;
|
||||
; Code originally obtained from Scheme Repository, since hacked.
|
||||
;
|
||||
; Sort and Sort! will sort lists and vectors. The former returns a new
|
||||
; data structure; the latter sorts the data structure in-place. A
|
||||
; mergesort algorithm is used.
|
||||
|
||||
; Destructive merge of two sorted lists.
|
||||
|
||||
(define (merge!! a b less?)
|
||||
|
||||
(define (loop r a b)
|
||||
(if (less? (car b) (car a))
|
||||
(begin (set-cdr! r b)
|
||||
(if (null? (cdr b))
|
||||
(set-cdr! b a)
|
||||
(loop b a (cdr b)) ))
|
||||
;; (car a) <= (car b)
|
||||
(begin (set-cdr! r a)
|
||||
(if (null? (cdr a))
|
||||
(set-cdr! a b)
|
||||
(loop a (cdr a) b)) )) )
|
||||
|
||||
(cond ((null? a) b)
|
||||
((null? b) a)
|
||||
((less? (car b) (car a))
|
||||
(if (null? (cdr b))
|
||||
(set-cdr! b a)
|
||||
(loop b a (cdr b)))
|
||||
b)
|
||||
(else ; (car a) <= (car b)
|
||||
(if (null? (cdr a))
|
||||
(set-cdr! a b)
|
||||
(loop a (cdr a) b))
|
||||
a)))
|
||||
|
||||
; Sort procedure which copies the input list and then sorts the
|
||||
; new list imperatively. Due to Richard O'Keefe; algorithm
|
||||
; attributed to D.H.D. Warren
|
||||
|
||||
(define (sort!! seq less?)
|
||||
|
||||
(define (step n)
|
||||
(cond ((> n 2)
|
||||
(let* ((j (quotient n 2))
|
||||
(a (step j))
|
||||
(k (- n j))
|
||||
(b (step k)))
|
||||
(merge!! a b less?)))
|
||||
((= n 2)
|
||||
(let ((x (car seq))
|
||||
(y (cadr seq))
|
||||
(p seq))
|
||||
(set! seq (cddr seq))
|
||||
(if (less? y x)
|
||||
(begin
|
||||
(set-car! p y)
|
||||
(set-car! (cdr p) x)))
|
||||
(set-cdr! (cdr p) '())
|
||||
p))
|
||||
((= n 1)
|
||||
(let ((p seq))
|
||||
(set! seq (cdr seq))
|
||||
(set-cdr! p '())
|
||||
p))
|
||||
(else
|
||||
'())))
|
||||
|
||||
(step (length seq)))
|
||||
|
||||
(define (sort! seq less?)
|
||||
(cond ((null? seq)
|
||||
seq)
|
||||
((pair? seq)
|
||||
(sort!! seq less?))
|
||||
((vector? seq)
|
||||
(do ((l (sort!! (vector->list seq) less?) (cdr l))
|
||||
(i 0 (+ i 1)))
|
||||
((null? l) seq)
|
||||
(vector-set! seq i (car l))))
|
||||
(else
|
||||
(error "sort!: not a valid sequence: " seq))))
|
||||
|
||||
(define (sort seq less?)
|
||||
(cond ((null? seq)
|
||||
seq)
|
||||
((pair? seq)
|
||||
(sort!! (list-copy seq) less?))
|
||||
((vector? seq)
|
||||
(list->vector (sort!! (vector->list seq) less?)))
|
||||
(else
|
||||
(error "sort: not a valid sequence: " seq))))
|
||||
|
||||
; eof
|
||||
|
||||
; This is pretty much optimal for Larceny.
|
||||
|
||||
(define (list-copy l)
|
||||
(define (loop l prev)
|
||||
(if (null? l)
|
||||
#t
|
||||
(let ((q (cons (car l) '())))
|
||||
(set-cdr! prev q)
|
||||
(loop (cdr l) q))))
|
||||
(if (null? l)
|
||||
l
|
||||
(let ((first (cons (car l) '())))
|
||||
(loop (cdr l) first)
|
||||
first)))
|
||||
|
||||
sort))
|
||||
|
||||
(define *rand* 21)
|
||||
(define (randm m)
|
||||
(set! *rand* (remainder (* *rand* 17) m))
|
||||
*rand*)
|
||||
|
||||
(define (rgen n m)
|
||||
(let loop ((n n) (l '()))
|
||||
(if (zero? n)
|
||||
l
|
||||
(loop (- n 1) (cons (randm m) l)))))
|
||||
|
||||
(define (sort-benchmark sorter n)
|
||||
(let ((l (rgen n 1000000)))
|
||||
(time (length (sorter l <)))))
|
||||
|
||||
(sort-benchmark sort1 1000000)
|
||||
|
28
benchmarks/gabriel/tak.sch
Normal file
28
benchmarks/gabriel/tak.sch
Normal file
|
@ -0,0 +1,28 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: tak.sch
|
||||
; Description: TAK benchmark from the Gabriel tests
|
||||
; Author: Richard Gabriel
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 09:58:18 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; TAK -- A vanilla version of the TAKeuchi function
|
||||
|
||||
(define (tak x y z)
|
||||
(if (not (< y x))
|
||||
z
|
||||
(tak (tak (- x 1) y z)
|
||||
(tak (- y 1) z x)
|
||||
(tak (- z 1) x y))))
|
||||
|
||||
;;; call: (tak 18 12 6)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 500) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (tak 18 12 (if input 6 0)))))))
|
43
benchmarks/gabriel/takl.sch
Normal file
43
benchmarks/gabriel/takl.sch
Normal file
|
@ -0,0 +1,43 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: takl.sch
|
||||
; Description: TAKL benchmark from the Gabriel tests
|
||||
; Author: Richard Gabriel
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 10:07:00 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; TAKL -- The TAKeuchi function using lists as counters.
|
||||
|
||||
(define (listn n)
|
||||
(if (not (= 0 n))
|
||||
(cons n (listn (- n 1)))
|
||||
'()))
|
||||
|
||||
(define l18l (listn 18))
|
||||
(define l12l (listn 12))
|
||||
(define l6l (listn 2))
|
||||
|
||||
(define (mas x y z)
|
||||
(if (not (shorterp y x))
|
||||
z
|
||||
(mas (mas (cdr x)
|
||||
y z)
|
||||
(mas (cdr y)
|
||||
z x)
|
||||
(mas (cdr z)
|
||||
x y))))
|
||||
|
||||
(define (shorterp x y)
|
||||
(and (not (null? y))
|
||||
(or (null? x)
|
||||
(shorterp (cdr x)
|
||||
(cdr y)))))
|
||||
|
||||
;;; call: (mas 18l 12l 6l)
|
||||
|
||||
|
||||
(let ((v (if (with-input-from-file "input.txt" read) l6l '())))
|
||||
(time (mas l18l l12l v)))
|
525
benchmarks/gabriel/takr.sch
Normal file
525
benchmarks/gabriel/takr.sch
Normal file
|
@ -0,0 +1,525 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: takr.sch
|
||||
; Description: TAKR benchmark
|
||||
; Author: Richard Gabriel
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 10:12:43 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; TAKR -- 100 function (count `em) version of TAK that tries to defeat cache
|
||||
;;; memory effects. Results should be the same as for TAK on stack machines.
|
||||
;;; Distribution of calls is not completely flat.
|
||||
|
||||
(define (tak0 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak1 (tak37 (- x 1) y z)
|
||||
(tak11 (- y 1) z x)
|
||||
(tak17 (- z 1) x y)))))
|
||||
(define (tak1 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak2 (tak74 (- x 1) y z)
|
||||
(tak22 (- y 1) z x)
|
||||
(tak34 (- z 1) x y)))))
|
||||
(define (tak2 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak3 (tak11 (- x 1) y z)
|
||||
(tak33 (- y 1) z x)
|
||||
(tak51 (- z 1) x y)))))
|
||||
(define (tak3 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak4 (tak48 (- x 1) y z)
|
||||
(tak44 (- y 1) z x)
|
||||
(tak68 (- z 1) x y)))))
|
||||
(define (tak4 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak5 (tak85 (- x 1) y z)
|
||||
(tak55 (- y 1) z x)
|
||||
(tak85 (- z 1) x y)))))
|
||||
(define (tak5 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak6 (tak22 (- x 1) y z)
|
||||
(tak66 (- y 1) z x)
|
||||
(tak2 (- z 1) x y)))))
|
||||
(define (tak6 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak7 (tak59 (- x 1) y z)
|
||||
(tak77 (- y 1) z x)
|
||||
(tak19 (- z 1) x y)))))
|
||||
(define (tak7 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak8 (tak96 (- x 1) y z)
|
||||
(tak88 (- y 1) z x)
|
||||
(tak36 (- z 1) x y)))))
|
||||
(define (tak8 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak9 (tak33 (- x 1) y z)
|
||||
(tak99 (- y 1) z x)
|
||||
(tak53 (- z 1) x y)))))
|
||||
(define (tak9 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak10 (tak70 (- x 1) y z)
|
||||
(tak10 (- y 1) z x)
|
||||
(tak70 (- z 1) x y)))))
|
||||
(define (tak10 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak11 (tak7 (- x 1) y z)
|
||||
(tak21 (- y 1) z x)
|
||||
(tak87 (- z 1) x y)))))
|
||||
(define (tak11 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak12 (tak44 (- x 1) y z)
|
||||
(tak32 (- y 1) z x)
|
||||
(tak4 (- z 1) x y)))))
|
||||
(define (tak12 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak13 (tak81 (- x 1) y z)
|
||||
(tak43 (- y 1) z x)
|
||||
(tak21 (- z 1) x y)))))
|
||||
|
||||
(define (tak13 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak14 (tak18 (- x 1) y z)
|
||||
(tak54 (- y 1) z x)
|
||||
(tak38 (- z 1) x y)))))
|
||||
(define (tak14 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak15 (tak55 (- x 1) y z)
|
||||
(tak65 (- y 1) z x)
|
||||
(tak55 (- z 1) x y)))))
|
||||
(define (tak15 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak16 (tak92 (- x 1) y z)
|
||||
(tak76 (- y 1) z x)
|
||||
(tak72 (- z 1) x y)))))
|
||||
(define (tak16 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak17 (tak29 (- x 1) y z)
|
||||
(tak87 (- y 1) z x)
|
||||
(tak89 (- z 1) x y)))))
|
||||
(define (tak17 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak18 (tak66 (- x 1) y z)
|
||||
(tak98 (- y 1) z x)
|
||||
(tak6 (- z 1) x y)))))
|
||||
(define (tak18 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak19 (tak3 (- x 1) y z)
|
||||
(tak9 (- y 1) z x)
|
||||
(tak23 (- z 1) x y)))))
|
||||
(define (tak19 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak20 (tak40 (- x 1) y z)
|
||||
(tak20 (- y 1) z x)
|
||||
(tak40 (- z 1) x y)))))
|
||||
(define (tak20 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak21 (tak77 (- x 1) y z)
|
||||
(tak31 (- y 1) z x)
|
||||
(tak57 (- z 1) x y)))))
|
||||
(define (tak21 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak22 (tak14 (- x 1) y z)
|
||||
(tak42 (- y 1) z x)
|
||||
(tak74 (- z 1) x y)))))
|
||||
(define (tak22 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak23 (tak51 (- x 1) y z)
|
||||
(tak53 (- y 1) z x)
|
||||
(tak91 (- z 1) x y)))))
|
||||
(define (tak23 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak24 (tak88 (- x 1) y z)
|
||||
(tak64 (- y 1) z x)
|
||||
(tak8 (- z 1) x y)))))
|
||||
(define (tak24 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak25 (tak25 (- x 1) y z)
|
||||
(tak75 (- y 1) z x)
|
||||
(tak25 (- z 1) x y)))))
|
||||
(define (tak25 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak26 (tak62 (- x 1) y z)
|
||||
(tak86 (- y 1) z x)
|
||||
(tak42 (- z 1) x y)))))
|
||||
(define (tak26 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak27 (tak99 (- x 1) y z)
|
||||
(tak97 (- y 1) z x)
|
||||
(tak59 (- z 1) x y)))))
|
||||
(define (tak27 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak28 (tak36 (- x 1) y z)
|
||||
(tak8 (- y 1) z x)
|
||||
(tak76 (- z 1) x y)))))
|
||||
(define (tak28 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak29 (tak73 (- x 1) y z)
|
||||
(tak19 (- y 1) z x)
|
||||
(tak93 (- z 1) x y)))))
|
||||
(define (tak29 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak30 (tak10 (- x 1) y z)
|
||||
(tak30 (- y 1) z x)
|
||||
(tak10 (- z 1) x y)))))
|
||||
(define (tak30 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak31 (tak47 (- x 1) y z)
|
||||
(tak41 (- y 1) z x)
|
||||
(tak27 (- z 1) x y)))))
|
||||
(define (tak31 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak32 (tak84 (- x 1) y z)
|
||||
(tak52 (- y 1) z x)
|
||||
(tak44 (- z 1) x y)))))
|
||||
(define (tak32 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak33 (tak21 (- x 1) y z)
|
||||
(tak63 (- y 1) z x)
|
||||
(tak61 (- z 1) x y)))))
|
||||
(define (tak33 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak34 (tak58 (- x 1) y z)
|
||||
(tak74 (- y 1) z x)
|
||||
(tak78 (- z 1) x y)))))
|
||||
(define (tak34 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak35 (tak95 (- x 1) y z)
|
||||
(tak85 (- y 1) z x)
|
||||
(tak95 (- z 1) x y)))))
|
||||
(define (tak35 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak36 (tak32 (- x 1) y z)
|
||||
(tak96 (- y 1) z x)
|
||||
(tak12 (- z 1) x y)))))
|
||||
(define (tak36 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak37 (tak69 (- x 1) y z)
|
||||
(tak7 (- y 1) z x)
|
||||
(tak29 (- z 1) x y)))))
|
||||
(define (tak37 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak38 (tak6 (- x 1) y z)
|
||||
(tak18 (- y 1) z x)
|
||||
(tak46 (- z 1) x y)))))
|
||||
(define (tak38 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak39 (tak43 (- x 1) y z)
|
||||
(tak29 (- y 1) z x)
|
||||
(tak63 (- z 1) x y)))))
|
||||
(define (tak39 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak40 (tak80 (- x 1) y z)
|
||||
(tak40 (- y 1) z x)
|
||||
(tak80 (- z 1) x y)))))
|
||||
(define (tak40 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak41 (tak17 (- x 1) y z)
|
||||
(tak51 (- y 1) z x)
|
||||
(tak97 (- z 1) x y)))))
|
||||
(define (tak41 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak42 (tak54 (- x 1) y z)
|
||||
(tak62 (- y 1) z x)
|
||||
(tak14 (- z 1) x y)))))
|
||||
(define (tak42 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak43 (tak91 (- x 1) y z)
|
||||
(tak73 (- y 1) z x)
|
||||
(tak31 (- z 1) x y)))))
|
||||
(define (tak43 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak44 (tak28 (- x 1) y z)
|
||||
(tak84 (- y 1) z x)
|
||||
(tak48 (- z 1) x y)))))
|
||||
(define (tak44 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak45 (tak65 (- x 1) y z)
|
||||
(tak95 (- y 1) z x)
|
||||
(tak65 (- z 1) x y)))))
|
||||
(define (tak45 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak46 (tak2 (- x 1) y z)
|
||||
(tak6 (- y 1) z x)
|
||||
(tak82 (- z 1) x y)))))
|
||||
(define (tak46 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak47 (tak39 (- x 1) y z)
|
||||
(tak17 (- y 1) z x)
|
||||
(tak99 (- z 1) x y)))))
|
||||
(define (tak47 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak48 (tak76 (- x 1) y z)
|
||||
(tak28 (- y 1) z x)
|
||||
(tak16 (- z 1) x y)))))
|
||||
(define (tak48 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak49 (tak13 (- x 1) y z)
|
||||
(tak39 (- y 1) z x)
|
||||
(tak33 (- z 1) x y)))))
|
||||
(define (tak49 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak50 (tak50 (- x 1) y z)
|
||||
(tak50 (- y 1) z x)
|
||||
(tak50 (- z 1) x y)))))
|
||||
(define (tak50 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak51 (tak87 (- x 1) y z)
|
||||
(tak61 (- y 1) z x)
|
||||
(tak67 (- z 1) x y)))))
|
||||
(define (tak51 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak52 (tak24 (- x 1) y z)
|
||||
(tak72 (- y 1) z x)
|
||||
(tak84 (- z 1) x y)))))
|
||||
(define (tak52 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak53 (tak61 (- x 1) y z)
|
||||
(tak83 (- y 1) z x)
|
||||
(tak1 (- z 1) x y)))))
|
||||
(define (tak53 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak54 (tak98 (- x 1) y z)
|
||||
(tak94 (- y 1) z x)
|
||||
(tak18 (- z 1) x y)))))
|
||||
(define (tak54 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak55 (tak35 (- x 1) y z)
|
||||
(tak5 (- y 1) z x)
|
||||
(tak35 (- z 1) x y)))))
|
||||
(define (tak55 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak56 (tak72 (- x 1) y z)
|
||||
(tak16 (- y 1) z x)
|
||||
(tak52 (- z 1) x y)))))
|
||||
(define (tak56 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak57 (tak9 (- x 1) y z)
|
||||
(tak27 (- y 1) z x)
|
||||
(tak69 (- z 1) x y)))))
|
||||
(define (tak57 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak58 (tak46 (- x 1) y z)
|
||||
(tak38 (- y 1) z x)
|
||||
(tak86 (- z 1) x y)))))
|
||||
(define (tak58 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak59 (tak83 (- x 1) y z)
|
||||
(tak49 (- y 1) z x)
|
||||
(tak3 (- z 1) x y)))))
|
||||
(define (tak59 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak60 (tak20 (- x 1) y z)
|
||||
(tak60 (- y 1) z x)
|
||||
(tak20 (- z 1) x y)))))
|
||||
(define (tak60 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak61 (tak57 (- x 1) y z)
|
||||
(tak71 (- y 1) z x)
|
||||
(tak37 (- z 1) x y)))))
|
||||
(define (tak61 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak62 (tak94 (- x 1) y z)
|
||||
(tak82 (- y 1) z x)
|
||||
(tak54 (- z 1) x y)))))
|
||||
(define (tak62 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak63 (tak31 (- x 1) y z)
|
||||
(tak93 (- y 1) z x)
|
||||
(tak71 (- z 1) x y)))))
|
||||
(define (tak63 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak64 (tak68 (- x 1) y z)
|
||||
(tak4 (- y 1) z x)
|
||||
(tak88 (- z 1) x y)))))
|
||||
(define (tak64 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak65 (tak5 (- x 1) y z)
|
||||
(tak15 (- y 1) z x)
|
||||
(tak5 (- z 1) x y)))))
|
||||
(define (tak65 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak66 (tak42 (- x 1) y z)
|
||||
(tak26 (- y 1) z x)
|
||||
(tak22 (- z 1) x y)))))
|
||||
(define (tak66 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak67 (tak79 (- x 1) y z)
|
||||
(tak37 (- y 1) z x)
|
||||
(tak39 (- z 1) x y)))))
|
||||
(define (tak67 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak68 (tak16 (- x 1) y z)
|
||||
(tak48 (- y 1) z x)
|
||||
(tak56 (- z 1) x y)))))
|
||||
(define (tak68 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak69 (tak53 (- x 1) y z)
|
||||
(tak59 (- y 1) z x)
|
||||
(tak73 (- z 1) x y)))))
|
||||
(define (tak69 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak70 (tak90 (- x 1) y z)
|
||||
(tak70 (- y 1) z x)
|
||||
(tak90 (- z 1) x y)))))
|
||||
(define (tak70 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak71 (tak27 (- x 1) y z)
|
||||
(tak81 (- y 1) z x)
|
||||
(tak7 (- z 1) x y)))))
|
||||
(define (tak71 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak72 (tak64 (- x 1) y z)
|
||||
(tak92 (- y 1) z x)
|
||||
(tak24 (- z 1) x y)))))
|
||||
(define (tak72 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak73 (tak1 (- x 1) y z)
|
||||
(tak3 (- y 1) z x)
|
||||
(tak41 (- z 1) x y)))))
|
||||
(define (tak73 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak74 (tak38 (- x 1) y z)
|
||||
(tak14 (- y 1) z x)
|
||||
(tak58 (- z 1) x y)))))
|
||||
(define (tak74 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak75 (tak75 (- x 1) y z)
|
||||
(tak25 (- y 1) z x)
|
||||
(tak75 (- z 1) x y)))))
|
||||
(define (tak75 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak76 (tak12 (- x 1) y z)
|
||||
(tak36 (- y 1) z x)
|
||||
(tak92 (- z 1) x y)))))
|
||||
(define (tak76 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak77 (tak49 (- x 1) y z)
|
||||
(tak47 (- y 1) z x)
|
||||
(tak9 (- z 1) x y)))))
|
||||
(define (tak77 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak78 (tak86 (- x 1) y z)
|
||||
(tak58 (- y 1) z x)
|
||||
(tak26 (- z 1) x y)))))
|
||||
(define (tak78 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak79 (tak23 (- x 1) y z)
|
||||
(tak69 (- y 1) z x)
|
||||
(tak43 (- z 1) x y)))))
|
||||
(define (tak79 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak80 (tak60 (- x 1) y z)
|
||||
(tak80 (- y 1) z x)
|
||||
(tak60 (- z 1) x y)))))
|
||||
(define (tak80 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak81 (tak97 (- x 1) y z)
|
||||
(tak91 (- y 1) z x)
|
||||
(tak77 (- z 1) x y)))))
|
||||
(define (tak81 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak82 (tak34 (- x 1) y z)
|
||||
(tak2 (- y 1) z x)
|
||||
(tak94 (- z 1) x y)))))
|
||||
(define (tak82 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak83 (tak71 (- x 1) y z)
|
||||
(tak13 (- y 1) z x)
|
||||
(tak11 (- z 1) x y)))))
|
||||
(define (tak83 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak84 (tak8 (- x 1) y z)
|
||||
(tak24 (- y 1) z x)
|
||||
(tak28 (- z 1) x y)))))
|
||||
(define (tak84 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak85 (tak45 (- x 1) y z)
|
||||
(tak35 (- y 1) z x)
|
||||
(tak45 (- z 1) x y)))))
|
||||
(define (tak85 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak86 (tak82 (- x 1) y z)
|
||||
(tak46 (- y 1) z x)
|
||||
(tak62 (- z 1) x y)))))
|
||||
(define (tak86 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak87 (tak19 (- x 1) y z)
|
||||
(tak57 (- y 1) z x)
|
||||
(tak79 (- z 1) x y)))))
|
||||
(define (tak87 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak88 (tak56 (- x 1) y z)
|
||||
(tak68 (- y 1) z x)
|
||||
(tak96 (- z 1) x y)))))
|
||||
(define (tak88 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak89 (tak93 (- x 1) y z)
|
||||
(tak79 (- y 1) z x)
|
||||
(tak13 (- z 1) x y)))))
|
||||
(define (tak89 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak90 (tak30 (- x 1) y z)
|
||||
(tak90 (- y 1) z x)
|
||||
(tak30 (- z 1) x y)))))
|
||||
(define (tak90 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak91 (tak67 (- x 1) y z)
|
||||
(tak1 (- y 1) z x)
|
||||
(tak47 (- z 1) x y)))))
|
||||
(define (tak91 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak92 (tak4 (- x 1) y z)
|
||||
(tak12 (- y 1) z x)
|
||||
(tak64 (- z 1) x y)))))
|
||||
(define (tak92 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak93 (tak41 (- x 1) y z)
|
||||
(tak23 (- y 1) z x)
|
||||
(tak81 (- z 1) x y)))))
|
||||
(define (tak93 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak94 (tak78 (- x 1) y z)
|
||||
(tak34 (- y 1) z x)
|
||||
(tak98 (- z 1) x y)))))
|
||||
(define (tak94 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak95 (tak15 (- x 1) y z)
|
||||
(tak45 (- y 1) z x)
|
||||
(tak15 (- z 1) x y)))))
|
||||
(define (tak95 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak96 (tak52 (- x 1) y z)
|
||||
(tak56 (- y 1) z x)
|
||||
(tak32 (- z 1) x y)))))
|
||||
(define (tak96 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak97 (tak89 (- x 1) y z)
|
||||
(tak67 (- y 1) z x)
|
||||
(tak49 (- z 1) x y)))))
|
||||
(define (tak97 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak98 (tak26 (- x 1) y z)
|
||||
(tak78 (- y 1) z x)
|
||||
(tak66 (- z 1) x y)))))
|
||||
(define (tak98 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak99 (tak63 (- x 1) y z)
|
||||
(tak89 (- y 1) z x)
|
||||
(tak83 (- z 1) x y)))))
|
||||
(define (tak99 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak0 (tak0 (- x 1) y z)
|
||||
(tak0 (- y 1) z x)
|
||||
(tak0 (- z 1) x y)))))
|
||||
|
||||
;;; call: (tak0 18 12 6)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 500) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (tak0 18 12 (if input 6 0)))))))
|
528
benchmarks/gabriel/takr2.sch
Normal file
528
benchmarks/gabriel/takr2.sch
Normal file
|
@ -0,0 +1,528 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: takr.sch
|
||||
; Description: TAKR benchmark
|
||||
; Author: Richard Gabriel
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 10:12:43 (Bob Shaw)
|
||||
; 22-Jul-87 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; TAKR -- 100 function (count `em) version of TAK that tries to defeat cache
|
||||
;;; memory effects. Results should be the same as for TAK on stack machines.
|
||||
;;; Distribution of calls is not completely flat.
|
||||
|
||||
(define (tak x y z)
|
||||
(define (tak0 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak1 (tak37 (- x 1) y z)
|
||||
(tak11 (- y 1) z x)
|
||||
(tak17 (- z 1) x y)))))
|
||||
(define (tak1 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak2 (tak74 (- x 1) y z)
|
||||
(tak22 (- y 1) z x)
|
||||
(tak34 (- z 1) x y)))))
|
||||
(define (tak2 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak3 (tak11 (- x 1) y z)
|
||||
(tak33 (- y 1) z x)
|
||||
(tak51 (- z 1) x y)))))
|
||||
(define (tak3 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak4 (tak48 (- x 1) y z)
|
||||
(tak44 (- y 1) z x)
|
||||
(tak68 (- z 1) x y)))))
|
||||
(define (tak4 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak5 (tak85 (- x 1) y z)
|
||||
(tak55 (- y 1) z x)
|
||||
(tak85 (- z 1) x y)))))
|
||||
(define (tak5 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak6 (tak22 (- x 1) y z)
|
||||
(tak66 (- y 1) z x)
|
||||
(tak2 (- z 1) x y)))))
|
||||
(define (tak6 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak7 (tak59 (- x 1) y z)
|
||||
(tak77 (- y 1) z x)
|
||||
(tak19 (- z 1) x y)))))
|
||||
(define (tak7 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak8 (tak96 (- x 1) y z)
|
||||
(tak88 (- y 1) z x)
|
||||
(tak36 (- z 1) x y)))))
|
||||
(define (tak8 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak9 (tak33 (- x 1) y z)
|
||||
(tak99 (- y 1) z x)
|
||||
(tak53 (- z 1) x y)))))
|
||||
(define (tak9 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak10 (tak70 (- x 1) y z)
|
||||
(tak10 (- y 1) z x)
|
||||
(tak70 (- z 1) x y)))))
|
||||
(define (tak10 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak11 (tak7 (- x 1) y z)
|
||||
(tak21 (- y 1) z x)
|
||||
(tak87 (- z 1) x y)))))
|
||||
(define (tak11 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak12 (tak44 (- x 1) y z)
|
||||
(tak32 (- y 1) z x)
|
||||
(tak4 (- z 1) x y)))))
|
||||
(define (tak12 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak13 (tak81 (- x 1) y z)
|
||||
(tak43 (- y 1) z x)
|
||||
(tak21 (- z 1) x y)))))
|
||||
|
||||
(define (tak13 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak14 (tak18 (- x 1) y z)
|
||||
(tak54 (- y 1) z x)
|
||||
(tak38 (- z 1) x y)))))
|
||||
(define (tak14 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak15 (tak55 (- x 1) y z)
|
||||
(tak65 (- y 1) z x)
|
||||
(tak55 (- z 1) x y)))))
|
||||
(define (tak15 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak16 (tak92 (- x 1) y z)
|
||||
(tak76 (- y 1) z x)
|
||||
(tak72 (- z 1) x y)))))
|
||||
(define (tak16 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak17 (tak29 (- x 1) y z)
|
||||
(tak87 (- y 1) z x)
|
||||
(tak89 (- z 1) x y)))))
|
||||
(define (tak17 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak18 (tak66 (- x 1) y z)
|
||||
(tak98 (- y 1) z x)
|
||||
(tak6 (- z 1) x y)))))
|
||||
(define (tak18 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak19 (tak3 (- x 1) y z)
|
||||
(tak9 (- y 1) z x)
|
||||
(tak23 (- z 1) x y)))))
|
||||
(define (tak19 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak20 (tak40 (- x 1) y z)
|
||||
(tak20 (- y 1) z x)
|
||||
(tak40 (- z 1) x y)))))
|
||||
(define (tak20 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak21 (tak77 (- x 1) y z)
|
||||
(tak31 (- y 1) z x)
|
||||
(tak57 (- z 1) x y)))))
|
||||
(define (tak21 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak22 (tak14 (- x 1) y z)
|
||||
(tak42 (- y 1) z x)
|
||||
(tak74 (- z 1) x y)))))
|
||||
(define (tak22 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak23 (tak51 (- x 1) y z)
|
||||
(tak53 (- y 1) z x)
|
||||
(tak91 (- z 1) x y)))))
|
||||
(define (tak23 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak24 (tak88 (- x 1) y z)
|
||||
(tak64 (- y 1) z x)
|
||||
(tak8 (- z 1) x y)))))
|
||||
(define (tak24 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak25 (tak25 (- x 1) y z)
|
||||
(tak75 (- y 1) z x)
|
||||
(tak25 (- z 1) x y)))))
|
||||
(define (tak25 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak26 (tak62 (- x 1) y z)
|
||||
(tak86 (- y 1) z x)
|
||||
(tak42 (- z 1) x y)))))
|
||||
(define (tak26 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak27 (tak99 (- x 1) y z)
|
||||
(tak97 (- y 1) z x)
|
||||
(tak59 (- z 1) x y)))))
|
||||
(define (tak27 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak28 (tak36 (- x 1) y z)
|
||||
(tak8 (- y 1) z x)
|
||||
(tak76 (- z 1) x y)))))
|
||||
(define (tak28 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak29 (tak73 (- x 1) y z)
|
||||
(tak19 (- y 1) z x)
|
||||
(tak93 (- z 1) x y)))))
|
||||
(define (tak29 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak30 (tak10 (- x 1) y z)
|
||||
(tak30 (- y 1) z x)
|
||||
(tak10 (- z 1) x y)))))
|
||||
(define (tak30 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak31 (tak47 (- x 1) y z)
|
||||
(tak41 (- y 1) z x)
|
||||
(tak27 (- z 1) x y)))))
|
||||
(define (tak31 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak32 (tak84 (- x 1) y z)
|
||||
(tak52 (- y 1) z x)
|
||||
(tak44 (- z 1) x y)))))
|
||||
(define (tak32 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak33 (tak21 (- x 1) y z)
|
||||
(tak63 (- y 1) z x)
|
||||
(tak61 (- z 1) x y)))))
|
||||
(define (tak33 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak34 (tak58 (- x 1) y z)
|
||||
(tak74 (- y 1) z x)
|
||||
(tak78 (- z 1) x y)))))
|
||||
(define (tak34 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak35 (tak95 (- x 1) y z)
|
||||
(tak85 (- y 1) z x)
|
||||
(tak95 (- z 1) x y)))))
|
||||
(define (tak35 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak36 (tak32 (- x 1) y z)
|
||||
(tak96 (- y 1) z x)
|
||||
(tak12 (- z 1) x y)))))
|
||||
(define (tak36 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak37 (tak69 (- x 1) y z)
|
||||
(tak7 (- y 1) z x)
|
||||
(tak29 (- z 1) x y)))))
|
||||
(define (tak37 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak38 (tak6 (- x 1) y z)
|
||||
(tak18 (- y 1) z x)
|
||||
(tak46 (- z 1) x y)))))
|
||||
(define (tak38 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak39 (tak43 (- x 1) y z)
|
||||
(tak29 (- y 1) z x)
|
||||
(tak63 (- z 1) x y)))))
|
||||
(define (tak39 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak40 (tak80 (- x 1) y z)
|
||||
(tak40 (- y 1) z x)
|
||||
(tak80 (- z 1) x y)))))
|
||||
(define (tak40 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak41 (tak17 (- x 1) y z)
|
||||
(tak51 (- y 1) z x)
|
||||
(tak97 (- z 1) x y)))))
|
||||
(define (tak41 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak42 (tak54 (- x 1) y z)
|
||||
(tak62 (- y 1) z x)
|
||||
(tak14 (- z 1) x y)))))
|
||||
(define (tak42 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak43 (tak91 (- x 1) y z)
|
||||
(tak73 (- y 1) z x)
|
||||
(tak31 (- z 1) x y)))))
|
||||
(define (tak43 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak44 (tak28 (- x 1) y z)
|
||||
(tak84 (- y 1) z x)
|
||||
(tak48 (- z 1) x y)))))
|
||||
(define (tak44 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak45 (tak65 (- x 1) y z)
|
||||
(tak95 (- y 1) z x)
|
||||
(tak65 (- z 1) x y)))))
|
||||
(define (tak45 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak46 (tak2 (- x 1) y z)
|
||||
(tak6 (- y 1) z x)
|
||||
(tak82 (- z 1) x y)))))
|
||||
(define (tak46 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak47 (tak39 (- x 1) y z)
|
||||
(tak17 (- y 1) z x)
|
||||
(tak99 (- z 1) x y)))))
|
||||
(define (tak47 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak48 (tak76 (- x 1) y z)
|
||||
(tak28 (- y 1) z x)
|
||||
(tak16 (- z 1) x y)))))
|
||||
(define (tak48 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak49 (tak13 (- x 1) y z)
|
||||
(tak39 (- y 1) z x)
|
||||
(tak33 (- z 1) x y)))))
|
||||
(define (tak49 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak50 (tak50 (- x 1) y z)
|
||||
(tak50 (- y 1) z x)
|
||||
(tak50 (- z 1) x y)))))
|
||||
(define (tak50 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak51 (tak87 (- x 1) y z)
|
||||
(tak61 (- y 1) z x)
|
||||
(tak67 (- z 1) x y)))))
|
||||
(define (tak51 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak52 (tak24 (- x 1) y z)
|
||||
(tak72 (- y 1) z x)
|
||||
(tak84 (- z 1) x y)))))
|
||||
(define (tak52 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak53 (tak61 (- x 1) y z)
|
||||
(tak83 (- y 1) z x)
|
||||
(tak1 (- z 1) x y)))))
|
||||
(define (tak53 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak54 (tak98 (- x 1) y z)
|
||||
(tak94 (- y 1) z x)
|
||||
(tak18 (- z 1) x y)))))
|
||||
(define (tak54 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak55 (tak35 (- x 1) y z)
|
||||
(tak5 (- y 1) z x)
|
||||
(tak35 (- z 1) x y)))))
|
||||
(define (tak55 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak56 (tak72 (- x 1) y z)
|
||||
(tak16 (- y 1) z x)
|
||||
(tak52 (- z 1) x y)))))
|
||||
(define (tak56 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak57 (tak9 (- x 1) y z)
|
||||
(tak27 (- y 1) z x)
|
||||
(tak69 (- z 1) x y)))))
|
||||
(define (tak57 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak58 (tak46 (- x 1) y z)
|
||||
(tak38 (- y 1) z x)
|
||||
(tak86 (- z 1) x y)))))
|
||||
(define (tak58 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak59 (tak83 (- x 1) y z)
|
||||
(tak49 (- y 1) z x)
|
||||
(tak3 (- z 1) x y)))))
|
||||
(define (tak59 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak60 (tak20 (- x 1) y z)
|
||||
(tak60 (- y 1) z x)
|
||||
(tak20 (- z 1) x y)))))
|
||||
(define (tak60 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak61 (tak57 (- x 1) y z)
|
||||
(tak71 (- y 1) z x)
|
||||
(tak37 (- z 1) x y)))))
|
||||
(define (tak61 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak62 (tak94 (- x 1) y z)
|
||||
(tak82 (- y 1) z x)
|
||||
(tak54 (- z 1) x y)))))
|
||||
(define (tak62 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak63 (tak31 (- x 1) y z)
|
||||
(tak93 (- y 1) z x)
|
||||
(tak71 (- z 1) x y)))))
|
||||
(define (tak63 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak64 (tak68 (- x 1) y z)
|
||||
(tak4 (- y 1) z x)
|
||||
(tak88 (- z 1) x y)))))
|
||||
(define (tak64 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak65 (tak5 (- x 1) y z)
|
||||
(tak15 (- y 1) z x)
|
||||
(tak5 (- z 1) x y)))))
|
||||
(define (tak65 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak66 (tak42 (- x 1) y z)
|
||||
(tak26 (- y 1) z x)
|
||||
(tak22 (- z 1) x y)))))
|
||||
(define (tak66 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak67 (tak79 (- x 1) y z)
|
||||
(tak37 (- y 1) z x)
|
||||
(tak39 (- z 1) x y)))))
|
||||
(define (tak67 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak68 (tak16 (- x 1) y z)
|
||||
(tak48 (- y 1) z x)
|
||||
(tak56 (- z 1) x y)))))
|
||||
(define (tak68 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak69 (tak53 (- x 1) y z)
|
||||
(tak59 (- y 1) z x)
|
||||
(tak73 (- z 1) x y)))))
|
||||
(define (tak69 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak70 (tak90 (- x 1) y z)
|
||||
(tak70 (- y 1) z x)
|
||||
(tak90 (- z 1) x y)))))
|
||||
(define (tak70 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak71 (tak27 (- x 1) y z)
|
||||
(tak81 (- y 1) z x)
|
||||
(tak7 (- z 1) x y)))))
|
||||
(define (tak71 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak72 (tak64 (- x 1) y z)
|
||||
(tak92 (- y 1) z x)
|
||||
(tak24 (- z 1) x y)))))
|
||||
(define (tak72 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak73 (tak1 (- x 1) y z)
|
||||
(tak3 (- y 1) z x)
|
||||
(tak41 (- z 1) x y)))))
|
||||
(define (tak73 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak74 (tak38 (- x 1) y z)
|
||||
(tak14 (- y 1) z x)
|
||||
(tak58 (- z 1) x y)))))
|
||||
(define (tak74 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak75 (tak75 (- x 1) y z)
|
||||
(tak25 (- y 1) z x)
|
||||
(tak75 (- z 1) x y)))))
|
||||
(define (tak75 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak76 (tak12 (- x 1) y z)
|
||||
(tak36 (- y 1) z x)
|
||||
(tak92 (- z 1) x y)))))
|
||||
(define (tak76 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak77 (tak49 (- x 1) y z)
|
||||
(tak47 (- y 1) z x)
|
||||
(tak9 (- z 1) x y)))))
|
||||
(define (tak77 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak78 (tak86 (- x 1) y z)
|
||||
(tak58 (- y 1) z x)
|
||||
(tak26 (- z 1) x y)))))
|
||||
(define (tak78 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak79 (tak23 (- x 1) y z)
|
||||
(tak69 (- y 1) z x)
|
||||
(tak43 (- z 1) x y)))))
|
||||
(define (tak79 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak80 (tak60 (- x 1) y z)
|
||||
(tak80 (- y 1) z x)
|
||||
(tak60 (- z 1) x y)))))
|
||||
(define (tak80 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak81 (tak97 (- x 1) y z)
|
||||
(tak91 (- y 1) z x)
|
||||
(tak77 (- z 1) x y)))))
|
||||
(define (tak81 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak82 (tak34 (- x 1) y z)
|
||||
(tak2 (- y 1) z x)
|
||||
(tak94 (- z 1) x y)))))
|
||||
(define (tak82 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak83 (tak71 (- x 1) y z)
|
||||
(tak13 (- y 1) z x)
|
||||
(tak11 (- z 1) x y)))))
|
||||
(define (tak83 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak84 (tak8 (- x 1) y z)
|
||||
(tak24 (- y 1) z x)
|
||||
(tak28 (- z 1) x y)))))
|
||||
(define (tak84 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak85 (tak45 (- x 1) y z)
|
||||
(tak35 (- y 1) z x)
|
||||
(tak45 (- z 1) x y)))))
|
||||
(define (tak85 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak86 (tak82 (- x 1) y z)
|
||||
(tak46 (- y 1) z x)
|
||||
(tak62 (- z 1) x y)))))
|
||||
(define (tak86 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak87 (tak19 (- x 1) y z)
|
||||
(tak57 (- y 1) z x)
|
||||
(tak79 (- z 1) x y)))))
|
||||
(define (tak87 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak88 (tak56 (- x 1) y z)
|
||||
(tak68 (- y 1) z x)
|
||||
(tak96 (- z 1) x y)))))
|
||||
(define (tak88 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak89 (tak93 (- x 1) y z)
|
||||
(tak79 (- y 1) z x)
|
||||
(tak13 (- z 1) x y)))))
|
||||
(define (tak89 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak90 (tak30 (- x 1) y z)
|
||||
(tak90 (- y 1) z x)
|
||||
(tak30 (- z 1) x y)))))
|
||||
(define (tak90 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak91 (tak67 (- x 1) y z)
|
||||
(tak1 (- y 1) z x)
|
||||
(tak47 (- z 1) x y)))))
|
||||
(define (tak91 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak92 (tak4 (- x 1) y z)
|
||||
(tak12 (- y 1) z x)
|
||||
(tak64 (- z 1) x y)))))
|
||||
(define (tak92 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak93 (tak41 (- x 1) y z)
|
||||
(tak23 (- y 1) z x)
|
||||
(tak81 (- z 1) x y)))))
|
||||
(define (tak93 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak94 (tak78 (- x 1) y z)
|
||||
(tak34 (- y 1) z x)
|
||||
(tak98 (- z 1) x y)))))
|
||||
(define (tak94 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak95 (tak15 (- x 1) y z)
|
||||
(tak45 (- y 1) z x)
|
||||
(tak15 (- z 1) x y)))))
|
||||
(define (tak95 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak96 (tak52 (- x 1) y z)
|
||||
(tak56 (- y 1) z x)
|
||||
(tak32 (- z 1) x y)))))
|
||||
(define (tak96 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak97 (tak89 (- x 1) y z)
|
||||
(tak67 (- y 1) z x)
|
||||
(tak49 (- z 1) x y)))))
|
||||
(define (tak97 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak98 (tak26 (- x 1) y z)
|
||||
(tak78 (- y 1) z x)
|
||||
(tak66 (- z 1) x y)))))
|
||||
(define (tak98 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak99 (tak63 (- x 1) y z)
|
||||
(tak89 (- y 1) z x)
|
||||
(tak83 (- z 1) x y)))))
|
||||
(define (tak99 x y z)
|
||||
(cond ((not (< y x)) z)
|
||||
(else (tak0 (tak0 (- x 1) y z)
|
||||
(tak0 (- y 1) z x)
|
||||
(tak0 (- z 1) x y)))))
|
||||
|
||||
(tak0 x y z))
|
||||
|
||||
;;; call: (tak0 18 12 6)
|
||||
|
||||
(let ((input (with-input-from-file "input.txt" read)))
|
||||
(time
|
||||
(let loop ((n 500) (v 0))
|
||||
(if (zero? n)
|
||||
v
|
||||
(loop (- n 1) (tak 18 12 (if input 6 0)))))))
|
85
benchmarks/gabriel/triangle.sch
Normal file
85
benchmarks/gabriel/triangle.sch
Normal file
|
@ -0,0 +1,85 @@
|
|||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
; File: triangle.sch
|
||||
; Description: TRIANGLE benchmark
|
||||
; Author: Richard Gabriel
|
||||
; Created: 12-Apr-85
|
||||
; Modified: 12-Apr-85 10:30:32 (Bob Shaw)
|
||||
; 11-Aug-87 (Will Clinger)
|
||||
; 22-Jan-88 (Will Clinger)
|
||||
; Language: Scheme
|
||||
; Status: Public Domain
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;;; TRIANG -- Board game benchmark.
|
||||
|
||||
(define *board* (make-vector 16 1))
|
||||
(define *sequence* (make-vector 14 0))
|
||||
(define *a* (make-vector 37))
|
||||
(define *b* (make-vector 37))
|
||||
(define *c* (make-vector 37))
|
||||
(define *answer* '())
|
||||
(define *final* '())
|
||||
|
||||
(define (last-position)
|
||||
(do ((i 1 (+ i 1)))
|
||||
((or (= i 16) (= 1 (vector-ref *board* i)))
|
||||
(if (= i 16) 0 i))))
|
||||
|
||||
(define (ttry i depth)
|
||||
(cond ((= depth 14)
|
||||
(let ((lp (last-position)))
|
||||
(if (not (member lp *final*))
|
||||
(set! *final* (cons lp *final*))))
|
||||
(set! *answer*
|
||||
(cons (cdr (vector->list *sequence*)) *answer*))
|
||||
#t)
|
||||
((and (= 1 (vector-ref *board* (vector-ref *a* i)))
|
||||
(= 1 (vector-ref *board* (vector-ref *b* i)))
|
||||
(= 0 (vector-ref *board* (vector-ref *c* i))))
|
||||
(vector-set! *board* (vector-ref *a* i) 0)
|
||||
(vector-set! *board* (vector-ref *b* i) 0)
|
||||
(vector-set! *board* (vector-ref *c* i) 1)
|
||||
(vector-set! *sequence* depth i)
|
||||
(do ((j 0 (+ j 1))
|
||||
(depth (+ depth 1)))
|
||||
((or (= j 36) (ttry j depth)) #f))
|
||||
(vector-set! *board* (vector-ref *a* i) 1)
|
||||
(vector-set! *board* (vector-ref *b* i) 1)
|
||||
(vector-set! *board* (vector-ref *c* i) 0) '())
|
||||
(else #f)))
|
||||
|
||||
(define (gogogo i)
|
||||
(let ((*answer* '())
|
||||
(*final* '()))
|
||||
(ttry i 1)))
|
||||
|
||||
(for-each (lambda (i x) (vector-set! *a* i x))
|
||||
'(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
||||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
|
||||
'(1 2 4 3 5 6 1 3 6 2 5 4 11 12
|
||||
13 7 8 4 4 7 11 8 12 13 6 10
|
||||
15 9 14 13 13 14 15 9 10
|
||||
6 6))
|
||||
(for-each (lambda (i x) (vector-set! *b* i x))
|
||||
'(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
||||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
|
||||
'(2 4 7 5 8 9 3 6 10 5 9 8
|
||||
12 13 14 8 9 5 2 4 7 5 8
|
||||
9 3 6 10 5 9 8 12 13 14
|
||||
8 9 5 5))
|
||||
(for-each (lambda (i x) (vector-set! *c* i x))
|
||||
'(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
||||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
|
||||
'(4 7 11 8 12 13 6 10 15 9 14 13
|
||||
13 14 15 9 10 6 1 2 4 3 5 6 1
|
||||
3 6 2 5 4 11 12 13 7 8 4 4))
|
||||
(vector-set! *board* 5 0)
|
||||
|
||||
;;; call: (gogogo 22))
|
||||
|
||||
(time (let loop ((n 100000))
|
||||
(if (zero? n)
|
||||
'done
|
||||
(begin
|
||||
(gogogo 22)
|
||||
(loop (- n 1))))))
|
Loading…
Add table
Reference in a new issue