(define (find-in-path file . o) (any (lambda (dir) (let ((path (make-path dir file))) (and (file-exists? path) path))) (if (pair? o) (car o) (string-split (get-environment-variable "PATH") #\:)))) (define (find-sexp-in-path file dirs . o) (let ((pred (if (pair? o) (car o) (lambda (x) #t)))) (any (lambda (dir) (let ((path (make-path dir file))) (and (file-exists? path) (guard (exn (else #f)) (let ((x (call-with-input-file path read))) (and (pred x) x)))))) dirs))) (define (write-to-string x) (call-with-output-string (lambda (out) (write x out)))) (define (display-to-string x) (call-with-output-string (lambda (out) (if (bytevector? x) (write-bytevector x out) (display x out))))) (define (resource->bytevector cfg uri) (let ((uri (if (uri? uri) uri (string->path-uri 'http uri)))) (if (uri-host uri) (if (conf-get cfg 'use-curl?) (process->bytevector `(curl --silent ,(uri->string uri))) (call-with-input-url uri port->bytevector)) (file->bytevector (uri-path uri))))) ;; path-normalize either a uri or path, and return the result as a string (define (uri-normalize x) (cond ((uri? x) (uri->string (uri-with-path x (path-normalize (uri-path x))))) ((not (string? x)) (error "not a uri" x)) ((string->uri x) => uri-normalize) (else (path-normalize x)))) (define (uri-directory x) (cond ((uri? x) (uri->string (uri-with-path x (path-directory (uri-path x))))) ((not (string? x)) (error "not a uri" x)) ((string->uri x) => uri-directory) (else (path-directory x)))) (define (version-split str) (if str (map (lambda (x) (or (string->number x) x)) (string-split str #\.)) '())) (define (version-compare a b) (define (less? x y) (cond ((number? x) (if (number? y) (< x y) 1)) ((number? y) -1) (else (string? a b) (> (version-compare a b) 0)) (define (version>=? a b) (>= (version-compare a b) 0)) ;; graph is a list of ((vertex dep-vertices ...) ...) (define (topological-sort graph . o) (let ((eq (if (pair? o) (car o) equal?))) (cdr (let lp ((ls graph) (seen '()) (res '())) (if (null? ls) (cons seen res) (let ((x (caar ls))) (if (member x seen eq) (lp (cdr ls) seen res) (let lp2 ((ls2 (cdar ls)) (seen (cons x seen)) (res res)) (cond ((null? ls2) (lp (cdr ls) seen (cons x res))) ((member (car ls2) seen eq) (lp2 (cdr ls2) seen res)) ((assoc (car ls2) graph eq) => (lambda (vertices) (let ((tmp (lp (list vertices) seen res))) (lp2 (cdr ls2) (car tmp) (cdr tmp))))) (else (lp2 (cdr ls2) (cons (car ls2) seen) (cons (car ls2) res))))))))))))