/* eval.c -- evaluator library implementation */ /* Copyright (c) 2009 Alex Shinn. All rights reserved. */ /* BSD-style license: http://synthcode.com/license.txt */ #include "eval.h" /************************************************************************/ static struct core_form core_forms[] = { {SEXP_CORE, "define", CORE_DEFINE}, {SEXP_CORE, "set!", CORE_SET}, {SEXP_CORE, "lambda", CORE_LAMBDA}, {SEXP_CORE, "if", CORE_IF}, {SEXP_CORE, "begin", CORE_BEGIN}, {SEXP_CORE, "quote", CORE_QUOTE}, {SEXP_CORE, "define-syntax", CORE_DEFINE_SYNTAX}, {SEXP_CORE, "let-syntax", CORE_LET_SYNTAX}, {SEXP_CORE, "letrec-syntax", CORE_LETREC_SYNTAX}, }; static struct opcode opcodes[] = { #define _OP(c,o,n,m,t,u,s,i) {SEXP_OPCODE, c, o, n, m, t, u, s, i, NULL} _OP(OPC_TYPE_PREDICATE, OP_CAR, 1, 0, SEXP_PAIR, 0, "car", 0), _OP(OPC_TYPE_PREDICATE, OP_CDR, 1, 0, SEXP_PAIR, 0, "cdr", 0), _OP(OPC_ARITHMETIC, OP_ADD, 0, 1, SEXP_FIXNUM, 0, "+", 0), _OP(OPC_ARITHMETIC_INV, OP_SUB, 0, 1, SEXP_FIXNUM, 0, "-", OP_NEG), _OP(OPC_ARITHMETIC, OP_MUL, 0, 1, SEXP_FIXNUM, 0, "*", 0), _OP(OPC_ARITHMETIC_INV, OP_DIV, 0, 1, SEXP_FIXNUM, 0, "/", OP_INV), _OP(OPC_ARITHMETIC, OP_MOD, 2, 0, SEXP_FIXNUM, SEXP_FIXNUM, "%", 0), _OP(OPC_ARITHMETIC_CMP, OP_LT, 0, 1, SEXP_FIXNUM, 0, "<", 0), _OP(OPC_CONSTRUCTOR, OP_CONS, 2, 0, 0, 0, "cons", 0), _OP(OPC_CONSTRUCTOR, OP_MAKE_VECTOR, 2, 0, SEXP_FIXNUM, 0, "make-vector", 0), _OP(OPC_CONSTRUCTOR, OP_MAKE_PROCEDURE, 2, 0, 0, 0, "make-procedure", 0), #undef _OP }; #ifdef USE_DEBUG #include "debug.c" #else #define print_stack(...) #define print_bytecode(...) #define disasm(...) #endif /********************** environment utilities ***************************/ sexp env_cell(env e, sexp key) { sexp ls, res=NULL; do { for (ls=e->bindings; SEXP_PAIRP(ls); ls=SEXP_CDR(ls)) { if (SEXP_CAAR(ls) == key) { res = SEXP_CAR(ls); break; } } e = e->parent; } while (e && ! res); return res; } int env_global_p (env e, sexp id) { while (e->parent) { if (assq(id, e->bindings) != SEXP_FALSE) return 0; else e = e->parent; } return 1; } void env_define(env e, sexp key, sexp value) { sexp cell = env_cell(e, key); if (cell) { SEXP_CDR(cell) = value; } else { e->bindings = cons(cons(key, value), e->bindings); } } env extend_env_closure (env e, sexp fv) { int i; env e2 = (env) SEXP_ALLOC(sizeof(struct env)); e2->tag = SEXP_ENV; e2->parent = e; e2->bindings = SEXP_NULL; for (i=0; SEXP_PAIRP(fv); fv = SEXP_CDR(fv), i++) { e2->bindings = cons(cons(SEXP_CAR(fv), make_integer(i)), e2->bindings); } return e2; } env make_standard_env() { int i; env e = (env) SEXP_ALLOC(sizeof(struct env)); e->tag = SEXP_ENV; e->parent = NULL; e->bindings = SEXP_NULL; for (i=0; i<(sizeof(core_forms)/sizeof(struct core_form)); i++) { env_define(e, intern(core_forms[i].name), (sexp)(&core_forms[i])); } for (i=0; i<(sizeof(opcodes)/sizeof(struct opcode)); i++) { env_define(e, intern(opcodes[i].name), (sexp)(&opcodes[i])); } return e; } /************************* bytecode utilities ***************************/ void shrink_bcode(bytecode *bc, unsigned int i) { bytecode tmp; if ((*bc)->len != i) { fprintf(stderr, "shrinking to %d\n", i); tmp = (bytecode) SEXP_ALLOC(sizeof(struct bytecode) + i); tmp->tag = SEXP_BYTECODE; tmp->len = i; memcpy(tmp->data, (*bc)->data, i); SEXP_FREE(*bc); *bc = tmp; } } void emit(bytecode *bc, unsigned int *i, char c) { bytecode tmp; if ((*bc)->len < (*i)+1) { fprintf(stderr, "expanding (%d < %d)\n", (*bc)->len, (*i)+1); tmp = (bytecode) SEXP_ALLOC(sizeof(unsigned int) + (*bc)->len*2); tmp->len = (*bc)->len*2; memcpy(tmp->data, (*bc)->data, (*bc)->len); SEXP_FREE(*bc); *bc = tmp; } (*bc)->data[(*i)++] = c; } void emit_word(bytecode *bc, unsigned int *i, unsigned long val) { bytecode tmp; if ((*bc)->len < (*i)+4) { tmp = (bytecode) SEXP_ALLOC(sizeof(unsigned int) + (*bc)->len*2); tmp->len = (*bc)->len*2; memcpy(tmp->data, (*bc)->data, (*bc)->len); SEXP_FREE(*bc); *bc = tmp; } *((unsigned long*)(&((*bc)->data[*i]))) = val; *i += sizeof(unsigned long); } #define emit_push(bc,i,obj) (emit(bc,i,OP_PUSH), emit_word(bc,i,(unsigned long)obj)) sexp make_procedure(sexp bc, sexp vars) { sexp proc = SEXP_NEW(); if (! proc) return SEXP_ERROR; proc->tag = SEXP_PROCEDURE; proc->data1 = (void*) bc; proc->data2 = (void*) vars; return proc; } /************************* the compiler ***************************/ void analyze(sexp obj, bytecode *bc, unsigned int *i, env e, sexp params, sexp fv, sexp sv, unsigned int *d) { int tmp1, tmp2; env e2 = e; sexp o1, o2, cell; if (SEXP_PAIRP(obj)) { /* fprintf(stderr, ":: pair\n"); */ if (SEXP_SYMBOLP(SEXP_CAR(obj))) { fprintf(stderr, ":: symbol application\n"); o1 = env_cell(e, SEXP_CAR(obj)); /* fprintf(stderr, ":: => %p\n", o1); */ if (! o1) errx(1, "unknown operator: %s", SEXP_CAR(obj)); o1 = SEXP_CDR(o1); /* fprintf(stderr, ":: => %p\n", o1); */ if (SEXP_COREP(o1)) { /* core form */ fprintf(stderr, ":: core form\n"); switch (((core_form)o1)->code) { case CORE_LAMBDA: fprintf(stderr, ":: lambda\n"); analyze_lambda(SEXP_FALSE, SEXP_CADR(obj), SEXP_CDDR(obj), bc, i, e, params, fv, sv, d); break; case CORE_DEFINE: fprintf(stderr, "compiling global set: %p\n", SEXP_CADR(obj)); if ((((core_form)o1)->code == CORE_DEFINE) && SEXP_PAIRP(SEXP_CADR(obj))) { analyze_lambda(SEXP_CAR(SEXP_CADR(obj)), SEXP_CDR(SEXP_CADR(obj)), SEXP_CDDR(obj), bc, i, e, params, fv, sv, d); } else { analyze(SEXP_CADDR(obj), bc, i, e, params, fv, sv, d); } emit(bc, i, OP_GLOBAL_SET); emit_word(bc, i, (unsigned long) (SEXP_PAIRP(SEXP_CADR(obj)) ? SEXP_CAR(SEXP_CADR(obj)) : SEXP_CADR(obj))); emit(bc, i, OP_PUSH); (*d)++; emit_word(bc, i, (unsigned long) SEXP_UNDEF); break; case CORE_SET: fprintf(stderr, "set!: "); write_sexp(stderr, SEXP_CADR(obj)); fprintf(stderr, " sv: "); write_sexp(stderr, sv); fprintf(stderr, "\n"); analyze(SEXP_CADDR(obj), bc, i, e, params, fv, sv, d); analyze_var_ref(SEXP_CADR(obj), bc, i, e, params, fv, SEXP_NULL, d); emit(bc, i, OP_SET_CAR); break; case CORE_BEGIN: for (o2 = SEXP_CDR(obj); SEXP_PAIRP(o2); o2 = SEXP_CDR(o2)) { analyze(SEXP_CAR(o2), bc, i, e, params, fv, sv, d); if (SEXP_PAIRP(SEXP_CDR(o2))) emit(bc, i, OP_DROP); } break; case CORE_IF: fprintf(stderr, "test clause: %d\n", *i); analyze(SEXP_CADR(obj), bc, i, e, params, fv, sv, d); emit(bc, i, OP_JUMP_UNLESS); /* jumps if test fails */ tmp1 = *i; emit(bc, i, 0); fprintf(stderr, "pass clause: %d\n", *i); analyze(SEXP_CADDR(obj), bc, i, e, params, fv, sv, d); emit(bc, i, OP_JUMP); tmp2 = *i; emit(bc, i, 0); ((signed char*) (*bc)->data)[tmp1] = (*i)-tmp1-1; /* patch */ fprintf(stderr, "fail clause: %d\n", *i); if (SEXP_PAIRP(SEXP_CDDDR(obj))) { analyze(SEXP_CADDDR(obj), bc, i, e, params, fv, sv, d); } else { emit(bc, i, OP_PUSH); (*d)++; emit_word(bc, i, (unsigned long) SEXP_UNDEF); } ((signed char*) (*bc)->data)[tmp2] = (*i)-tmp2-1; /* patch */ break; case CORE_QUOTE: emit(bc, i, OP_PUSH); (*d)++; emit_word(bc, i, (unsigned long)SEXP_CADR(obj)); break; default: errx(1, "unknown core form: %s", ((core_form)o1)->code); } } else if (SEXP_OPCODEP(o1)) { fprintf(stderr, ":: opcode\n"); /* direct opcode */ /* verify arity */ switch (((opcode)o1)->op_class) { case OPC_TYPE_PREDICATE: case OPC_PREDICATE: case OPC_ARITHMETIC: case OPC_ARITHMETIC_INV: case OPC_ARITHMETIC_CMP: if (SEXP_NULLP(SEXP_CDR(obj))) { errx(1, "unknown opcode class: %d", ((opcode)o1)->op_class); } else if (SEXP_NULLP(SEXP_CDDR(obj))) { if (((opcode)o1)->op_class == OPC_ARITHMETIC_INV) { analyze(SEXP_CADR(obj), bc, i, e, params, fv, sv, d); emit(bc, i, ((opcode)o1)->op_inverse); } else { analyze(SEXP_CADR(obj), bc, i, e, params, fv, sv, d); } } else { /* fprintf(stderr, ":: class: %d\n", ((opcode)o1)->op_class); */ for (o2 = reverse(SEXP_CDR(obj)); SEXP_PAIRP(o2); o2 = SEXP_CDR(o2)) { /* fprintf(stderr, ":: arg: %d\n", SEXP_CAR(o2)); */ analyze(SEXP_CAR(o2), bc, i, e, params, fv, sv, d); } fprintf(stderr, ":: name: %d\n", ((opcode)o1)->op_name); emit(bc, i, ((opcode)o1)->op_name); (*d) -= length(SEXP_CDDR(obj)); } break; default: errx(1, "unknown opcode class: %d", ((opcode)o1)->op_class); } } else { /* function call */ analyze_app(obj, bc, i, e, params, fv, sv, d); } } else if (SEXP_PAIRP(SEXP_CAR(obj))) { o2 = env_cell(e, SEXP_CAAR(obj)); /* if (o2 */ /* && SEXP_COREP(SEXP_CDR(o2)) */ /* && (((core_form)SEXP_CDR(o2))->code == CORE_LAMBDA)) { */ /* /\* let *\/ */ /* } else { */ /* computed application */ analyze_app(obj, bc, i, e, params, fv, sv, d); /* } */ } else { errx(1, "invalid operator: %s", SEXP_CAR(obj)); } } else if (SEXP_SYMBOLP(obj)) { analyze_var_ref(obj, bc, i, e, params, fv, sv, d); } else { fprintf(stderr, "push: %d\n", (unsigned long)obj); emit(bc, i, OP_PUSH); emit_word(bc, i, (unsigned long)obj); (*d)++; } } void analyze_var_ref (sexp obj, bytecode *bc, unsigned int *i, env e, sexp params, sexp fv, sexp sv, unsigned int *d) { int tmp; fprintf(stderr, "symbol lookup, param length: %d sv: ", length(params)); write_sexp(stderr, sv); fprintf(stderr, "\n"); if ((tmp = list_index(params, obj)) >= 0) { fprintf(stderr, "compiling local ref: %p => %d (d = %d)\n", obj, tmp, *d); emit(bc, i, OP_STACK_REF); emit_word(bc, i, tmp + *d + 4); (*d)++; } else if ((tmp = list_index(fv, obj)) >= 0) { fprintf(stderr, "compiling closure ref: %p => %d\n", obj, tmp); emit(bc, i, OP_CLOSURE_REF); emit_word(bc, i, tmp); (*d)++; } else { fprintf(stderr, "compiling global ref: %p\n", obj); emit(bc, i, OP_GLOBAL_REF); emit_word(bc, i, (unsigned long) obj); (*d)++; } if (list_index(sv, obj) >= 0) { fprintf(stderr, "mutable variables, fetching CAR\n"); emit(bc, i, OP_CAR); } } void analyze_app (sexp obj, bytecode *bc, unsigned int *i, env e, sexp params, sexp fv, sexp sv, unsigned int *d) { sexp o1; unsigned long len = length(SEXP_CDR(obj)); /* push the arguments onto the stack */ for (o1 = reverse(SEXP_CDR(obj)); SEXP_PAIRP(o1); o1 = SEXP_CDR(o1)) { analyze(SEXP_CAR(o1), bc, i, e, params, fv, sv, d); } /* push the operator onto the stack */ analyze(SEXP_CAR(obj), bc, i, e, params, fv, sv, d); /* make the call */ emit(bc, i, OP_CALL); emit_word(bc, i, (unsigned long) make_integer(len)); } sexp free_vars (env e, sexp formals, sexp obj, sexp fv) { sexp o1; if (SEXP_SYMBOLP(obj)) { if (env_global_p(e, obj) || (list_index(formals, obj) >= 0) || (list_index(fv, obj) >= 0)) return fv; else return cons(obj, fv); } else if (SEXP_PAIRP(obj)) { if (SEXP_SYMBOLP(SEXP_CAR(obj))) { if ((o1 = env_cell(e, SEXP_CAR(obj))) && SEXP_COREP(o1) && (((core_form)SEXP_CDR(o1))->code == CORE_LAMBDA)) { return free_vars(e, SEXP_CADR(obj), SEXP_CADDR(obj), fv); } } while (SEXP_PAIRP(obj)) { fv = free_vars(e, formals, SEXP_CAR(obj), fv); obj = SEXP_CDR(obj); } return fv; } else { return fv; } } sexp set_vars (env e, sexp formals, sexp obj, sexp sv) { sexp tmp; if (SEXP_NULLP(formals)) return sv; if (SEXP_PAIRP(obj)) { if (SEXP_SYMBOLP(SEXP_CAR(obj))) { if ((tmp = env_cell(e, SEXP_CAR(obj))) && SEXP_COREP(SEXP_CDR(tmp))) { if (((core_form)SEXP_CDR(tmp))->code == CORE_LAMBDA) { formals = lset_diff(formals, SEXP_CADR(obj)); return set_vars(e, formals, SEXP_CADDR(obj), sv); } else if (((core_form)SEXP_CDR(tmp))->code == CORE_SET) { if ((list_index(formals, SEXP_CADR(obj)) >= 0) && ! (list_index(sv, SEXP_CADR(obj)) >= 0)) { fprintf(stderr, "found set! "); write_sexp(stderr, SEXP_CADR(obj)); fprintf(stderr, "\n"); sv = cons(SEXP_CADR(obj), sv); return set_vars(e, formals, SEXP_CADDR(obj), sv); } } } } while (SEXP_PAIRP(obj)) { sv = set_vars(e, formals, SEXP_CAR(obj), sv); obj = SEXP_CDR(obj); } } return sv; } void analyze_lambda (sexp name, sexp formals, sexp body, bytecode *bc, unsigned int *i, env e, sexp params, sexp fv, sexp sv, unsigned int *d) { sexp obj, ls, fv2 = free_vars(e, formals, body, SEXP_NULL); env e2 = extend_env_closure(e, formals); int k; fprintf(stderr, "%d free-vars\n", length(fv2)); write_sexp(stderr, fv2); fprintf(stderr, "\n"); obj = (sexp) compile(formals, body, e2, fv2, sv, 0); emit(bc, i, OP_PUSH); emit_word(bc, i, (unsigned long) SEXP_UNDEF); emit(bc, i, OP_PUSH); emit_word(bc, i, (unsigned long) make_integer(length(fv2))); emit(bc, i, OP_MAKE_VECTOR); (*d)++; for (ls=fv2, k=0; SEXP_PAIRP(ls); ls=SEXP_CDR(ls), k++) { analyze_var_ref(SEXP_CAR(ls), bc, i, e, params, fv, SEXP_NULL, d); emit(bc, i, OP_PUSH); emit_word(bc, i, (unsigned long) make_integer(k)); emit(bc, i, OP_STACK_REF); emit_word(bc, i, 3); emit(bc, i, OP_VECTOR_SET); emit(bc, i, OP_DROP); (*d)--; } emit(bc, i, OP_PUSH); emit_word(bc, i, (unsigned long) obj); emit(bc, i, OP_MAKE_PROCEDURE); } bytecode compile(sexp params, sexp obj, env e, sexp fv, sexp sv, int done_p) { unsigned int i = 0, j, d = 0; bytecode bc = (bytecode) SEXP_ALLOC(sizeof(struct bytecode)+INIT_BCODE_SIZE); sexp sv2 = set_vars(e, params, obj, SEXP_NULL), ls; fprintf(stderr, "set-vars: "); write_sexp(stderr, sv2); fprintf(stderr, "\n"); bc->tag = SEXP_BYTECODE; bc->len = INIT_BCODE_SIZE; fprintf(stderr, "analyzing\n"); for (ls=params; SEXP_PAIRP(ls); ls=SEXP_CDR(ls)) { if ((j = list_index(sv2, SEXP_CAR(ls)) >= 0)) { fprintf(stderr, "consing mutable var\n"); emit(&bc, &i, OP_PUSH); emit_word(&bc, &i, (unsigned long) SEXP_NULL); emit(&bc, &i, OP_STACK_REF); emit_word(&bc, &i, j+4); emit(&bc, &i, OP_CONS); emit(&bc, &i, OP_STACK_SET); emit_word(&bc, &i, j+4); emit(&bc, &i, OP_DROP); } } sv = append(sv2, sv); for ( ; SEXP_PAIRP(obj); obj=SEXP_CDR(obj)) { fprintf(stderr, "loop: "); write_sexp(stderr, obj); fprintf(stderr, "\n"); analyze(SEXP_CAR(obj), &bc, &i, e, params, fv, sv, &d); if (SEXP_PAIRP(SEXP_CDR(obj))) emit(&bc, &i, OP_DROP); } emit(&bc, &i, done_p ? OP_DONE : OP_RET); shrink_bcode(&bc, i); fprintf(stderr, "done compiling:\n"); print_bytecode(bc); disasm(bc); return bc; } /*********************** the virtual machine **************************/ sexp vm(bytecode bc, env e, sexp* stack, unsigned int top) { unsigned char *ip=bc->data; sexp cp, tmp; int i; loop: /* fprintf(stderr, "opcode: %s (%d), ip: %d\n", reverse_opcode_names[*ip], *ip, ip); */ /* print_bytecode(bc); */ switch (*ip++) { case OP_NOOP: fprintf(stderr, "noop\n"); break; case OP_GLOBAL_REF: fprintf(stderr, "global ref: ip: %p => %p: ", ip, ((sexp*)ip)[0]); fflush(stderr); write_sexp(stderr, ((sexp*)ip)[0]); fprintf(stderr, "\n"); tmp = env_cell(e, ((sexp*)ip)[0]); stack[top++]=SEXP_CDR(tmp); ip += sizeof(sexp); break; case OP_GLOBAL_SET: fprintf(stderr, "global set: %p: ", ((sexp*)ip)[0]); fflush(stderr); write_sexp(stderr, ((sexp*)ip)[0]); fprintf(stderr, "\n"); env_define(e, ((sexp*)ip)[0], stack[--top]); ip += sizeof(sexp); break; case OP_STACK_REF: fprintf(stderr, "stack ref: ip=%p, %d - %d => ", ip, top, (unsigned long) ((sexp*)ip)[0]); fflush(stderr); write_sexp(stderr, stack[top - (unsigned int) ((sexp*)ip)[0]]); fprintf(stderr, "\n"); stack[top] = stack[top - (unsigned int) ((sexp*)ip)[0]]; ip += sizeof(sexp); top++; break; case OP_STACK_SET: stack[top - (unsigned int) ((sexp*)ip)[0]] = stack[top-1]; stack[top-1] = SEXP_UNDEF; ip += sizeof(sexp); break; case OP_CLOSURE_REF: fprintf(stderr, "closure-ref %d => ", ((sexp*)ip)[0]); fflush(stderr); write_sexp(stderr, vector_ref(cp,((sexp*)ip)[0])); fprintf(stderr, "\n"); stack[top++]=vector_ref(cp,((sexp*)ip)[0]); ip += sizeof(sexp); break; case OP_VECTOR_REF: stack[top-2]=vector_ref(stack[top-1], stack[top-2]); top--; break; case OP_VECTOR_SET: fprintf(stderr, "vector-set! %p %d => ", stack[top-1], unbox_integer(stack[top-2])); write_sexp(stderr, stack[top-3]); fprintf(stderr, "\n"); vector_set(stack[top-1], stack[top-2], stack[top-3]); stack[top-3]=SEXP_UNDEF; top-=2; break; case OP_MAKE_PROCEDURE: stack[top-2]=make_procedure(stack[top-1], stack[top-2]); top--; break; case OP_MAKE_VECTOR: stack[top-2]=make_vector(unbox_integer(stack[top-1]), stack[top-2]); top--; break; case OP_PUSH: /* fprintf(stderr, " (push)\n"); */ stack[top++]=((sexp*)ip)[0]; ip += sizeof(sexp); break; case OP_DUP: stack[top]=stack[top-1]; top++; break; case OP_DROP: top--; break; case OP_SWAP: tmp = stack[top-2]; stack[top-2]=stack[top-1]; stack[top-1]=tmp; break; case OP_CAR: stack[top-1]=car(stack[top-1]); break; case OP_CDR: stack[top-1]=cdr(stack[top-1]); break; case OP_SET_CAR: set_car(stack[top-1], stack[top-2]); stack[top-2]=SEXP_UNDEF; top--; break; case OP_SET_CDR: set_cdr(stack[top-1], stack[top-2]); stack[top-2]=SEXP_UNDEF; top--; break; case OP_CONS: stack[top-2]=cons(stack[top-1], stack[top-2]); top--; break; case OP_ADD: fprintf(stderr, "OP_ADD %d %d\n", stack[top-1], stack[top-2]); stack[top-2]=sexp_add(stack[top-1],stack[top-2]); top--; break; case OP_SUB: stack[top-2]=sexp_sub(stack[top-1],stack[top-2]); top--; break; case OP_MUL: stack[top-2]=sexp_mul(stack[top-2],stack[top-1]); top--; break; case OP_DIV: stack[top-2]=sexp_div(stack[top-2],stack[top-1]); top--; break; case OP_MOD: stack[top-2]=sexp_mod(stack[top-2],stack[top-1]); top--; break; case OP_LT: stack[top-2]=((stack[top-2] < stack[top-1]) ? SEXP_TRUE : SEXP_FALSE); top--; break; case OP_CALL: fprintf(stderr, "CALL\n"); i = (unsigned long) ((sexp*)ip)[0]; tmp = stack[top-1]; if (! SEXP_PROCEDUREP(tmp)) errx(2, "non-procedure application: %p", tmp); stack[top-1] = (sexp) i; stack[top] = make_integer(ip+4); stack[top+1] = cp; top+=2; bc = procedure_code(tmp); print_bytecode(bc); disasm(bc); ip = bc->data; cp = procedure_vars(tmp); fprintf(stderr, "... calling procedure at %p\ncp: ", ip); write_sexp(stderr, cp); fprintf(stderr, "\n"); fprintf(stderr, "stack at %d\n", top); print_stack(stack, top); break; case OP_JUMP_UNLESS: fprintf(stderr, "JUMP UNLESS, stack top is %d\n", stack[top-1]); if (stack[--top] == SEXP_FALSE) { fprintf(stderr, "test passed, jumping to + %d => %d\n", ((signed char*)ip)[0], ip + ((signed char*)ip)[0]); ip += ((signed char*)ip)[0]; } else { fprintf(stderr, "test failed, not jumping\n"); ip++; } break; case OP_JUMP: fprintf(stderr, "jumping to + %d => %d\n", ((signed char*)ip)[0], ip + ((signed char*)ip)[0]); ip += ((signed char*)ip)[0]; break; case OP_RET: fprintf(stderr, "returning @ %d: ", top-1); fflush(stderr); write_sexp(stderr, stack[top-1]); fprintf(stderr, "...\n"); print_stack(stack, top); /* top-1 */ /* stack: args ... n ip result */ cp = stack[top-2]; ip = (unsigned char*) unbox_integer(stack[top-3]); i = unbox_integer(stack[top-4]); stack[top-i-4] = stack[top-1]; top = top-i-3; fprintf(stderr, "... done returning\n"); break; case OP_DONE: fprintf(stderr, "finally returning @ %d: ", top-1); fflush(stderr); write_sexp(stderr, stack[top-1]); fprintf(stderr, "\n"); goto end_loop; default: fprintf(stderr, "unknown opcode: %d\n", *(ip-1)); stack[top] = SEXP_ERROR; goto end_loop; } /* print_stack(stack, top); */ goto loop; end_loop: return stack[top-1]; } /************************** eval interface ****************************/ sexp eval_in_stack(sexp obj, env e, sexp* stack, unsigned int top) { bytecode bc; bc = compile(SEXP_NULL, cons(obj, SEXP_NULL), e, SEXP_NULL, SEXP_NULL, 1); return vm(bc, e, stack, top); } sexp eval(sexp obj, env e) { sexp* stack = (sexp*) SEXP_ALLOC(sizeof(sexp) * INIT_STACK_SIZE); sexp res = eval_in_stack(obj, e, stack, 0); SEXP_FREE(stack); return res; } int main (int argc, char **argv) { sexp obj, res, *stack; env e; sexp_init(); e = make_standard_env(); stack = (sexp*) SEXP_ALLOC(sizeof(sexp) * INIT_STACK_SIZE); /* repl */ fprintf(stdout, "> "); fflush(stdout); while ((obj = read_sexp(stdin)) != SEXP_EOF) { write_sexp(stdout, obj); fprintf(stdout, "\n => "); res = eval_in_stack(obj, e, stack, 0); write_sexp(stdout, res); fprintf(stdout, "\n> "); fflush(stdout); } return 0; }