chibi-scheme/lib/chibi/bytevector.scm
2018-12-09 03:44:19 +08:00

146 lines
4.9 KiB
Scheme

;;> \section{Additional accessors}
;;> Retrieve a 16-bit unsigned integer value from the given bytevector
;;> \var{bv} at offset \var{i}, in little-endian order.
(define (bytevector-u16-ref-le bv i)
(+ (bytevector-u8-ref bv i)
(arithmetic-shift (bytevector-u8-ref bv (+ i 1)) 8)))
;;> Retrieve a 16-bit unsigned integer value from the given bytevector
;;> \var{bv} at offset \var{i}, in big-endian order.
(define (bytevector-u16-ref-be bv i)
(+ (arithmetic-shift (bytevector-u8-ref bv i) 8)
(bytevector-u8-ref bv (+ i 1))))
;;> Retrieve a 32-bit unsigned integer value from the given bytevector
;;> \var{bv} at offset \var{i}, in little-endian order.
(define (bytevector-u32-ref-le bv i)
(+ (bytevector-u8-ref bv i)
(arithmetic-shift (bytevector-u8-ref bv (+ i 1)) 8)
(arithmetic-shift (bytevector-u8-ref bv (+ i 2)) 16)
(arithmetic-shift (bytevector-u8-ref bv (+ i 3)) 24)))
;;> Retrieve a 32-bit unsigned integer value from the given bytevector
;;> \var{bv} at offset \var{i}, in big-endian order.
(define (bytevector-u32-ref-be bv i)
(+ (arithmetic-shift (bytevector-u8-ref bv i) 24)
(arithmetic-shift (bytevector-u8-ref bv (+ i 1)) 16)
(arithmetic-shift (bytevector-u8-ref bv (+ i 2)) 8)
(bytevector-u8-ref bv (+ i 3))))
;;> \section{Bignum encodings}
;;> A BER compressed integer (X.209) is an unsigned integer in base 128,
;;> most significant digit first, where the high bit is set on all but the
;;> final (least significant) byte. Thus any size integer can be
;;> encoded, but the encoding is efficient and small integers don't take
;;> up any more space than they would in normal char/short/int encodings.
(define (bytevector-ber-ref bv . o)
(let ((end (if (and (pair? o) (pair? (cdr o)))
(cadr o)
(bytevector-length bv))))
(let lp ((acc 0) (i (if (pair? o) (car o) 0)))
(if (>= i end)
(error "unterminated ber integer in bytevector" bv)
(let ((b (bytevector-u8-ref bv i)))
(if (< b 128)
(+ acc b)
(lp (arithmetic-shift (+ acc (bitwise-and b 127)) 7)
(+ i 1))))))))
(define (bytevector-ber-set! bv n . o)
;;(assert (integer? number) (not (negative? number)))
(let ((start (if (pair? o) (car o) 0))
(end (if (and (pair? o) (pair? (cdr o)))
(cadr o)
(bytevector-length bv))))
(let lp ((n (arithmetic-shift n -7))
(ls (list (bitwise-and n 127))))
(if (zero? n)
(do ((i start (+ i 1))
(ls ls (cdr ls)))
((null? ls))
(if (>= i end)
(error "integer doesn't fit in bytevector as ber"
bv n start end)
(bytevector-u8-set! bv i (car ls))))
(lp (arithmetic-shift n -7)
(cons (+ 128 (bitwise-and n 127)) ls))))))
;;> \section{Integer conversion}
;;> Convert an unsigned integer \var{n} to a bytevector representing
;;> the base-256 big-endian form (the zero index holds the MSB).
(define (integer->bytevector n)
(cond
((zero? n)
(make-bytevector 1 0))
((negative? n)
(error "can't convert a negative integer to bytevector" n))
(else
(let lp ((n n) (res '()))
(if (zero? n)
(let* ((len (length res))
(bv (make-bytevector len 0)))
(do ((i 0 (+ i 1))
(ls res (cdr ls)))
((= i len) bv)
(bytevector-u8-set! bv i (car ls))))
(lp (quotient n 256) (cons (remainder n 256) res)))))))
;;> The inverse of \scheme{integer->bytevector}. Convert a bytevector
;;> representing the base-256 big-endian form (the zero index holds
;;> the MSB) to the corresponding unsigned integer.
(define (bytevector->integer bv)
(let ((len (bytevector-length bv)))
(let lp ((i 0) (n 0))
(if (>= i len)
n
(lp (+ i 1)
(+ (arithmetic-shift n 8)
(bytevector-u8-ref bv i)))))))
;;> Utility to pad a bytevector with zeros. Padding is added to the
;;> left so as not to change the big-endian value.
(define (bytevector-pad-left bv len)
(let ((diff (- len (bytevector-length bv))))
(if (positive? diff)
(bytevector-append bv (make-bytevector diff 0))
bv)))
;;> \section{Hex string conversion}
;;> Big-endian conversion, guaranteed padded to even length.
(define (integer->hex-string n)
(let* ((res (number->string n 16))
(len (string-length res)))
(if (even? len)
res
(string-append "0" res))))
(define (hex-string->integer str)
(string->number str 16))
(define (bytevector->hex-string bv)
(let ((out (open-output-string))
(len (bytevector-length bv)))
(let lp ((i 0))
(cond
((>= i len)
(get-output-string out))
(else
(write-string (integer->hex-string (bytevector-u8-ref bv i)) out)
(lp (+ i 1)))))))
(define (hex-string->bytevector str)
(integer->bytevector (hex-string->integer str)))