mirror of
https://github.com/ashinn/chibi-scheme.git
synced 2025-05-18 21:29:19 +02:00
466 lines
15 KiB
Scheme
466 lines
15 KiB
Scheme
;; Adapted for R7RS by Alex Shinn 2018.
|
|
|
|
;; SRFI 101: Purely Functional Random-Access Pairs and Lists
|
|
;; Copyright (c) David Van Horn 2009. All Rights Reserved.
|
|
|
|
;; Permission is hereby granted, free of charge, to any person obtaining
|
|
;; a copy of this software and associated documentation
|
|
;; files (the "Software"), to deal in the Software without restriction,
|
|
;; including without limitation the rights to use, copy, modify, merge,
|
|
;; publish, distribute, sublicense, and/or sell copies of the Software,
|
|
;; and to permit persons to whom the Software is furnished to do so,
|
|
;; subject to the following conditions:
|
|
|
|
;; The above copyright notice and this permission notice shall be
|
|
;; included in all copies or substantial portions of the Software.
|
|
|
|
;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
;; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
;; NONINFRINGEMENT. REMEMBER, THERE IS NO SCHEME UNDERGROUND. IN NO EVENT
|
|
;; SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
;; DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
;; OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
;; THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
(define-record-type kons
|
|
(make-kons size tree rest)
|
|
kons?
|
|
(size kons-size)
|
|
(tree kons-tree)
|
|
(rest kons-rest))
|
|
|
|
(define-record-type node
|
|
(make-node val left right)
|
|
node?
|
|
(val node-val)
|
|
(left node-left)
|
|
(right node-right))
|
|
|
|
(define-syntax assert
|
|
(syntax-rules ()
|
|
((assert expr ...)
|
|
(begin (unless expr (error "assertion failed" 'expr)) ...))))
|
|
|
|
;; Nat -> Nat
|
|
(define (sub1 n) (- n 1))
|
|
(define (add1 n) (+ n 1))
|
|
|
|
;; [Tree X] -> X
|
|
(define (tree-val t)
|
|
(if (node? t)
|
|
(node-val t)
|
|
t))
|
|
|
|
;; [X -> Y] [Tree X] -> [Tree Y]
|
|
(define (tree-map f t)
|
|
(if (node? t)
|
|
(make-node (f (node-val t))
|
|
(tree-map f (node-left t))
|
|
(tree-map f (node-right t)))
|
|
(f t)))
|
|
|
|
;; [X -> Y] [Tree X] -> unspecified
|
|
(define (tree-for-each f t)
|
|
(if (node? t)
|
|
(begin (f (node-val t))
|
|
(tree-for-each f (node-left t))
|
|
(tree-for-each f (node-right t)))
|
|
(f t)))
|
|
|
|
;; [X Y Z ... -> R] [List [Tree X] [Tree Y] [Tree Z] ...] -> [Tree R]
|
|
(define (tree-map/n f ts)
|
|
(let recr ((ts ts))
|
|
(if (and (pair? ts)
|
|
(node? (car ts)))
|
|
(make-node (apply f (map node-val ts))
|
|
(recr (map node-left ts))
|
|
(recr (map node-right ts)))
|
|
(apply f ts))))
|
|
|
|
;; [X Y Z ... -> R] [List [Tree X] [Tree Y] [Tree Z] ...] -> unspecified
|
|
(define (tree-for-each/n f ts)
|
|
(let recr ((ts ts))
|
|
(if (and (pair? ts)
|
|
(node? (car ts)))
|
|
(begin (apply f (map node-val ts))
|
|
(recr (map node-left ts))
|
|
(recr (map node-right ts)))
|
|
(apply f ts))))
|
|
|
|
;; Nat [Nat -> X] -> [Tree X]
|
|
;; like build-list, but for complete binary trees
|
|
(define (build-tree i f) ;; i = 2^j-1
|
|
(let rec ((i i) (o 0))
|
|
(if (= 1 i)
|
|
(f o)
|
|
(let ((i/2 (half i)))
|
|
(make-node (f o)
|
|
(rec i/2 (add1 o))
|
|
(rec i/2 (+ 1 o i/2)))))))
|
|
|
|
;; Consumes n = 2^i-1 and produces 2^(i-1)-1.
|
|
;; Nat -> Nat
|
|
(define (half n)
|
|
(bitwise-arithmetic-shift n -1))
|
|
|
|
;; Nat X -> [Tree X]
|
|
(define (tr:make-tree i x) ;; i = 2^j-1
|
|
(let recr ((i i))
|
|
(if (= 1 i)
|
|
x
|
|
(let ((n (recr (half i))))
|
|
(make-node x n n)))))
|
|
|
|
;; Nat [Tree X] Nat [X -> X] -> X [Tree X]
|
|
(define (tree-ref/update mid t i f)
|
|
(cond ((zero? i)
|
|
(if (node? t)
|
|
(values (node-val t)
|
|
(make-node (f (node-val t))
|
|
(node-left t)
|
|
(node-right t)))
|
|
(values t (f t))))
|
|
((<= i mid)
|
|
(let-values (((v* t*) (tree-ref/update (half (sub1 mid))
|
|
(node-left t)
|
|
(sub1 i)
|
|
f)))
|
|
(values v* (make-node (node-val t) t* (node-right t)))))
|
|
(else
|
|
(let-values (((v* t*) (tree-ref/update (half (sub1 mid))
|
|
(node-right t)
|
|
(sub1 (- i mid))
|
|
f)))
|
|
(values v* (make-node (node-val t) (node-left t) t*))))))
|
|
|
|
;; Special-cased above to avoid logarathmic amount of cons'ing
|
|
;; and any multi-values overhead. Operates in constant space.
|
|
;; [Tree X] Nat Nat -> X
|
|
;; invariant: (= mid (half (sub1 (tree-count t))))
|
|
(define (tree-ref/a t i mid)
|
|
(cond ((zero? i) (tree-val t))
|
|
((<= i mid)
|
|
(tree-ref/a (node-left t)
|
|
(sub1 i)
|
|
(half (sub1 mid))))
|
|
(else
|
|
(tree-ref/a (node-right t)
|
|
(sub1 (- i mid))
|
|
(half (sub1 mid))))))
|
|
|
|
;; Nat [Tree X] Nat -> X
|
|
;; invariant: (= size (tree-count t))
|
|
(define (tree-ref size t i)
|
|
(if (zero? i)
|
|
(tree-val t)
|
|
(tree-ref/a t i (half (sub1 size)))))
|
|
|
|
;; Nat [Tree X] Nat [X -> X] -> [Tree X]
|
|
(define (tree-update size t i f)
|
|
(let recr ((mid (half (sub1 size))) (t t) (i i))
|
|
(cond ((zero? i)
|
|
(if (node? t)
|
|
(make-node (f (node-val t))
|
|
(node-left t)
|
|
(node-right t))
|
|
(f t)))
|
|
((<= i mid)
|
|
(make-node (node-val t)
|
|
(recr (half (sub1 mid))
|
|
(node-left t)
|
|
(sub1 i))
|
|
(node-right t)))
|
|
(else
|
|
(make-node (node-val t)
|
|
(node-left t)
|
|
(recr (half (sub1 mid))
|
|
(node-right t)
|
|
(sub1 (- i mid))))))))
|
|
|
|
;; ------------------------
|
|
;; Random access lists
|
|
|
|
;; [RaListof X]
|
|
(define ra:null (quote ()))
|
|
|
|
;; [Any -> Boolean]
|
|
(define ra:pair? kons?)
|
|
|
|
;; [Any -> Boolean]
|
|
(define ra:null? null?)
|
|
|
|
;; X [RaListof X] -> [RaListof X] /\
|
|
;; X Y -> [RaPair X Y]
|
|
(define (ra:cons x ls)
|
|
(if (kons? ls)
|
|
(let ((s (kons-size ls)))
|
|
(if (and (kons? (kons-rest ls))
|
|
(= (kons-size (kons-rest ls))
|
|
s))
|
|
(make-kons (+ 1 s s)
|
|
(make-node x
|
|
(kons-tree ls)
|
|
(kons-tree (kons-rest ls)))
|
|
(kons-rest (kons-rest ls)))
|
|
(make-kons 1 x ls)))
|
|
(make-kons 1 x ls)))
|
|
|
|
|
|
;; [RaPair X Y] -> X Y
|
|
(define ra:car+cdr
|
|
(lambda (p)
|
|
(assert (kons? p))
|
|
(if (node? (kons-tree p))
|
|
(let ((s* (half (kons-size p))))
|
|
(values (tree-val (kons-tree p))
|
|
(make-kons s*
|
|
(node-left (kons-tree p))
|
|
(make-kons s*
|
|
(node-right (kons-tree p))
|
|
(kons-rest p)))))
|
|
(values (kons-tree p) (kons-rest p)))))
|
|
|
|
;; [RaPair X Y] -> X
|
|
(define (ra:car p)
|
|
(call-with-values (lambda () (ra:car+cdr p))
|
|
(lambda (car cdr) car)))
|
|
|
|
;; [RaPair X Y] -> Y
|
|
(define (ra:cdr p)
|
|
(call-with-values (lambda () (ra:car+cdr p))
|
|
(lambda (car cdr) cdr)))
|
|
|
|
;; [RaListof X] Nat [X -> X] -> X [RaListof X]
|
|
(define (ra:list-ref/update ls i f)
|
|
;(assert (< i (ra:length ls)))
|
|
(let recr ((xs ls) (j i))
|
|
(if (< j (kons-size xs))
|
|
(let-values (((v* t*)
|
|
(tree-ref/update (half (sub1 (kons-size xs)))
|
|
(kons-tree xs) j f)))
|
|
(values v* (make-kons (kons-size xs)
|
|
t*
|
|
(kons-rest xs))))
|
|
(let-values (((v* r*)
|
|
(recr (kons-rest xs)
|
|
(- j (kons-size xs)))))
|
|
(values v* (make-kons (kons-size xs)
|
|
(kons-tree xs)
|
|
r*))))))
|
|
|
|
;; [RaListof X] Nat [X -> X] -> [RaListof X]
|
|
(define (ra:list-update ls i f)
|
|
;(assert (< i (ra:length ls)))
|
|
(let recr ((xs ls) (j i))
|
|
(let ((s (kons-size xs)))
|
|
(if (< j s)
|
|
(make-kons s (tree-update s (kons-tree xs) j f) (kons-rest xs))
|
|
(make-kons s (kons-tree xs) (recr (kons-rest xs) (- j s)))))))
|
|
|
|
;; [RaListof X] Nat X -> (values X [RaListof X])
|
|
(define (ra:list-ref/set ls i v)
|
|
(ra:list-ref/update ls i (lambda (_) v)))
|
|
|
|
;; X ... -> [RaListof X]
|
|
(define (ra:list . xs)
|
|
(fold-right ra:cons ra:null xs))
|
|
|
|
;; Nat X -> [RaListof X]
|
|
(define ra:make-list
|
|
(case-lambda
|
|
((k) (ra:make-list k 0))
|
|
((k obj)
|
|
(let loop ((n k) (a ra:null))
|
|
(cond ((zero? n) a)
|
|
(else
|
|
(let ((t (largest-skew-binary n)))
|
|
(loop (- n t)
|
|
(make-kons t (tr:make-tree t obj) a)))))))))
|
|
|
|
;; A Skew is a Nat 2^k-1 with k > 0.
|
|
|
|
;; Skew -> Skew
|
|
(define (skew-succ t) (add1 (bitwise-arithmetic-shift t 1)))
|
|
|
|
;; Computes the largest skew binary term t <= n.
|
|
;; Nat -> Skew
|
|
(define (largest-skew-binary n)
|
|
(if (= 1 n)
|
|
1
|
|
(let* ((t (largest-skew-binary (half n)))
|
|
(s (skew-succ t)))
|
|
(if (> s n) t s))))
|
|
|
|
;; [Any -> Boolean]
|
|
;; Is x a PROPER list?
|
|
(define (ra:list? x)
|
|
(or (ra:null? x)
|
|
(and (kons? x)
|
|
(ra:list? (kons-rest x)))))
|
|
|
|
(define ra:caar (lambda (ls) (ra:car (ra:car ls))))
|
|
(define ra:cadr (lambda (ls) (ra:car (ra:cdr ls))))
|
|
(define ra:cddr (lambda (ls) (ra:cdr (ra:cdr ls))))
|
|
(define ra:cdar (lambda (ls) (ra:cdr (ra:car ls))))
|
|
|
|
(define ra:caaar (lambda (ls) (ra:car (ra:car (ra:car ls)))))
|
|
(define ra:caadr (lambda (ls) (ra:car (ra:car (ra:cdr ls)))))
|
|
(define ra:caddr (lambda (ls) (ra:car (ra:cdr (ra:cdr ls)))))
|
|
(define ra:cadar (lambda (ls) (ra:car (ra:cdr (ra:car ls)))))
|
|
(define ra:cdaar (lambda (ls) (ra:cdr (ra:car (ra:car ls)))))
|
|
(define ra:cdadr (lambda (ls) (ra:cdr (ra:car (ra:cdr ls)))))
|
|
(define ra:cdddr (lambda (ls) (ra:cdr (ra:cdr (ra:cdr ls)))))
|
|
(define ra:cddar (lambda (ls) (ra:cdr (ra:cdr (ra:car ls)))))
|
|
|
|
(define ra:caaaar (lambda (ls) (ra:car (ra:car (ra:car (ra:car ls))))))
|
|
(define ra:caaadr (lambda (ls) (ra:car (ra:car (ra:car (ra:cdr ls))))))
|
|
(define ra:caaddr (lambda (ls) (ra:car (ra:car (ra:cdr (ra:cdr ls))))))
|
|
(define ra:caadar (lambda (ls) (ra:car (ra:car (ra:cdr (ra:car ls))))))
|
|
(define ra:cadaar (lambda (ls) (ra:car (ra:cdr (ra:car (ra:car ls))))))
|
|
(define ra:cadadr (lambda (ls) (ra:car (ra:cdr (ra:car (ra:cdr ls))))))
|
|
(define ra:cadddr (lambda (ls) (ra:car (ra:cdr (ra:cdr (ra:cdr ls))))))
|
|
(define ra:caddar (lambda (ls) (ra:car (ra:cdr (ra:cdr (ra:car ls))))))
|
|
(define ra:cdaaar (lambda (ls) (ra:cdr (ra:car (ra:car (ra:car ls))))))
|
|
(define ra:cdaadr (lambda (ls) (ra:cdr (ra:car (ra:car (ra:cdr ls))))))
|
|
(define ra:cdaddr (lambda (ls) (ra:cdr (ra:car (ra:cdr (ra:cdr ls))))))
|
|
(define ra:cdadar (lambda (ls) (ra:cdr (ra:car (ra:cdr (ra:car ls))))))
|
|
(define ra:cddaar (lambda (ls) (ra:cdr (ra:cdr (ra:car (ra:car ls))))))
|
|
(define ra:cddadr (lambda (ls) (ra:cdr (ra:cdr (ra:car (ra:cdr ls))))))
|
|
(define ra:cddddr (lambda (ls) (ra:cdr (ra:cdr (ra:cdr (ra:cdr ls))))))
|
|
(define ra:cdddar (lambda (ls) (ra:cdr (ra:cdr (ra:cdr (ra:car ls))))))
|
|
|
|
;; [RaList X] -> Nat
|
|
(define (ra:length ls)
|
|
(assert (ra:list? ls))
|
|
(let recr ((ls ls))
|
|
(if (kons? ls)
|
|
(+ (kons-size ls) (recr (kons-rest ls)))
|
|
0)))
|
|
|
|
(define (ra:length<=? ls k)
|
|
(let lp ((ls ls) (k k))
|
|
(if (positive? k)
|
|
(and (ra:pair? ls)
|
|
(lp (ra:cdr ls) (- k 1)))
|
|
#t)))
|
|
|
|
(define (make-foldl empty? first rest)
|
|
(letrec ((f (lambda (cons empty ls)
|
|
(if (empty? ls)
|
|
empty
|
|
(f cons
|
|
(cons (first ls) empty)
|
|
(rest ls))))))
|
|
f))
|
|
|
|
(define (make-foldr empty? first rest)
|
|
(letrec ((f (lambda (cons empty ls)
|
|
(if (empty? ls)
|
|
empty
|
|
(cons (first ls)
|
|
(f cons empty (rest ls)))))))
|
|
f))
|
|
|
|
;; [X Y -> Y] Y [RaListof X] -> Y
|
|
(define ra:foldl/1 (make-foldl ra:null? ra:car ra:cdr))
|
|
(define ra:foldr/1 (make-foldr ra:null? ra:car ra:cdr))
|
|
|
|
;; [RaListof X] ... -> [RaListof X]
|
|
(define (ra:append . lss)
|
|
(cond ((null? lss) ra:null)
|
|
(else (let recr ((lss lss))
|
|
(cond ((null? (cdr lss)) (car lss))
|
|
(else (ra:foldr/1 ra:cons
|
|
(recr (cdr lss))
|
|
(car lss))))))))
|
|
|
|
;; [RaListof X] -> [RaListof X]
|
|
(define (ra:reverse ls)
|
|
(ra:foldl/1 ra:cons ra:null ls))
|
|
|
|
;; [RaListof X] Nat -> [RaListof X]
|
|
(define (ra:list-tail ls i)
|
|
(let loop ((xs ls) (j i))
|
|
(cond ((zero? j) xs)
|
|
(else (loop (ra:cdr xs) (sub1 j))))))
|
|
|
|
;; [RaListof X] Nat -> X
|
|
;; Special-cased above to avoid logarathmic amount of cons'ing
|
|
;; and any multi-values overhead. Operates in constant space.
|
|
(define (ra:list-ref ls i)
|
|
;(assert (< i (ra:length ls)))
|
|
(let loop ((xs ls) (j i))
|
|
(if (< j (kons-size xs))
|
|
(tree-ref (kons-size xs) (kons-tree xs) j)
|
|
(loop (kons-rest xs) (- j (kons-size xs))))))
|
|
|
|
;; [RaListof X] Nat X -> [RaListof X]
|
|
(define (ra:list-set ls i v)
|
|
(let-values (((_ l*) (ra:list-ref/set ls i v))) l*))
|
|
|
|
;; [X ... -> y] [RaListof X] ... -> [RaListof Y]
|
|
;; Takes advantage of the fact that map produces a list of equal size.
|
|
(define ra:map
|
|
(case-lambda
|
|
((f ls)
|
|
(let recr ((ls ls))
|
|
(if (kons? ls)
|
|
(make-kons (kons-size ls)
|
|
(tree-map f (kons-tree ls))
|
|
(recr (kons-rest ls)))
|
|
ra:null)))
|
|
((f . lss)
|
|
;(check-nary-loop-args 'ra:map (lambda (x) x) f lss)
|
|
(let recr ((lss lss))
|
|
(cond ((ra:null? (car lss)) ra:null)
|
|
(else
|
|
;; IMPROVE ME: make one pass over lss.
|
|
(make-kons (kons-size (car lss))
|
|
(tree-map/n f (map kons-tree lss))
|
|
(recr (map kons-rest lss)))))))))
|
|
|
|
|
|
;; [X ... -> Y] [RaListof X] ... -> unspecified
|
|
(define ra:for-each
|
|
(case-lambda
|
|
((f ls)
|
|
(when (kons? ls)
|
|
(tree-for-each f (kons-tree ls))
|
|
(ra:for-each f (kons-rest ls))))
|
|
((f . lss)
|
|
;(check-nary-loop-args 'ra:map (lambda (x) x) f lss)
|
|
(let recr ((lss lss))
|
|
(when (ra:pair? (car lss))
|
|
(tree-map/n f (map kons-tree lss))
|
|
(recr (map kons-rest lss)))))))
|
|
|
|
;; [RaListof X] -> [Listof X]
|
|
(define (ra:random-access-list->linear-access-list x)
|
|
(ra:foldr/1 cons '() x))
|
|
|
|
;; [Listof X] -> [RaListof X]
|
|
(define (ra:linear-access-list->random-access-list x)
|
|
(fold-right ra:cons '() x))
|
|
|
|
;; This code based on code written by Abdulaziz Ghuloum
|
|
;; http://ikarus-scheme.org/pipermail/ikarus-users/2009-September/000595.html
|
|
(define get-cached
|
|
(let ((h (make-hash-table eq?)))
|
|
(lambda (x)
|
|
(define (f x)
|
|
(cond
|
|
((pair? x) (ra:cons (f (car x)) (f (cdr x))))
|
|
((vector? x) (vector-map f x))
|
|
(else x)))
|
|
(cond
|
|
((not (or (pair? x) (vector? x))) x)
|
|
((hash-table-ref/default h x #f))
|
|
(else
|
|
(let ((v (f x)))
|
|
(hash-table-set! h x v)
|
|
v))))))
|
|
|
|
(define-syntax ra:quote
|
|
(syntax-rules ()
|
|
((ra:quote datum) (get-cached 'datum))))
|