mirror of
https://github.com/ashinn/chibi-scheme.git
synced 2025-05-19 21:59:17 +02:00
224 lines
8.5 KiB
Scheme
224 lines
8.5 KiB
Scheme
;;; Copyright (c) 2004-2018 by Alex Shinn.
|
|
|
|
;; Adapted from SRFI 56.
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; syntax
|
|
|
|
(define-syntax combine
|
|
(syntax-rules ()
|
|
((combine) 0)
|
|
((combine b1) b1)
|
|
((combine b1 b2 b3 ...)
|
|
(combine (+ (arithmetic-shift b1 8) b2) b3 ...))))
|
|
|
|
(define-syntax bytes-u8-set-all!
|
|
(syntax-rules ()
|
|
((_) bv off i)
|
|
((_ bv off i b1) (bytevector-u8-set! bv (+ off i) b1))
|
|
((_ bv off i b1 b2 b3 ...)
|
|
(begin
|
|
(bytevector-u8-set! bv (+ off i) b1)
|
|
(bytes-u8-set-all! bv off (+ i 1) b2 b3 ...)))))
|
|
|
|
(define-syntax bytevector-u8-set-all!
|
|
(syntax-rules ()
|
|
((_ bvapp iapp b1 ...)
|
|
(let ((bv bvapp)
|
|
(i iapp))
|
|
(bytes-u8-set-all! bv i 0 b1 ...)))))
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; reading floating point numbers
|
|
|
|
;; Inspired by Oleg's implementation from
|
|
;; http://okmij.org/ftp/Scheme/reading-IEEE-floats.txt
|
|
;; but removes mutations and magic numbers and allows for manually
|
|
;; specifying the endianness.
|
|
;;
|
|
;; See also
|
|
;; http://www.cs.auckland.ac.nz/~jham1/07.211/floats.html
|
|
;; and
|
|
;; http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
|
|
;; as references to IEEE 754.
|
|
|
|
(define (bytevector-ieee-single-ref bytevector k endianness)
|
|
(define (mantissa expn b2 b3 b4)
|
|
(case expn
|
|
((255) ; special exponents
|
|
(if (zero? (combine b2 b3 b4)) (/ 1. 0.) (/ 0. 0.)))
|
|
((0) ; denormalized
|
|
(inexact (* (expt 2.0 (- 1 (+ 127 23))) (combine b2 b3 b4))))
|
|
(else
|
|
(inexact
|
|
(* (expt 2.0 (- expn (+ 127 23)))
|
|
(combine (+ b2 128) b3 b4)))))) ; hidden bit
|
|
(define (exponent b1 b2 b3 b4)
|
|
(if (> b2 127) ; 1st bit of b2 is low bit of expn
|
|
(mantissa (+ (* 2 b1) 1) (- b2 128) b3 b4)
|
|
(mantissa (* 2 b1) b2 b3 b4)))
|
|
(define (sign b1 b2 b3 b4)
|
|
(if (> b1 127) ; 1st bit of b1 is sign
|
|
(- (exponent (- b1 128) b2 b3 b4))
|
|
(exponent b1 b2 b3 b4)))
|
|
(let* ((b1 (bytevector-u8-ref bytevector (+ k 0)))
|
|
(b2 (bytevector-u8-ref bytevector (+ k 1)))
|
|
(b3 (bytevector-u8-ref bytevector (+ k 2)))
|
|
(b4 (bytevector-u8-ref bytevector (+ k 3))))
|
|
(if (eq? endianness 'big)
|
|
(sign b1 b2 b3 b4)
|
|
(sign b4 b3 b2 b1))))
|
|
|
|
(define (bytevector-ieee-single-native-ref bytevector k)
|
|
(bytevector-ieee-single-ref bytevector k (native-endianness)))
|
|
|
|
(define (bytevector-ieee-double-ref bytevector k endianness)
|
|
(define (mantissa expn b2 b3 b4 b5 b6 b7 b8)
|
|
(case expn
|
|
((255) ; special exponents
|
|
(if (zero? (combine b2 b3 b4 b5 b6 b7 b8)) (/ 1. 0.) (/ 0. 0.)))
|
|
((0) ; denormalized
|
|
(inexact (* (expt 2.0 (- 1 (+ 1023 52)))
|
|
(combine b2 b3 b4 b5 b6 b7 b8))))
|
|
(else
|
|
(inexact
|
|
(* (expt 2.0 (- expn (+ 1023 52)))
|
|
(combine (+ b2 16) b3 b4 b5 b6 b7 b8)))))) ; hidden bit
|
|
(define (exponent b1 b2 b3 b4 b5 b6 b7 b8)
|
|
(mantissa (bitwise-ior (arithmetic-shift b1 4) ; 7 bits
|
|
(arithmetic-shift b2 -4)) ; + 4 bits
|
|
(bitwise-and b2 #b1111)
|
|
b3 b4 b5 b6 b7 b8))
|
|
(define (sign b1 b2 b3 b4 b5 b6 b7 b8)
|
|
(if (> b1 127) ; 1st bit of b1 is sign
|
|
(- (exponent (- b1 128) b2 b3 b4 b5 b6 b7 b8))
|
|
(exponent b1 b2 b3 b4 b5 b6 b7 b8)))
|
|
(let* ((b1 (bytevector-u8-ref bytevector (+ k 0)))
|
|
(b2 (bytevector-u8-ref bytevector (+ k 1)))
|
|
(b3 (bytevector-u8-ref bytevector (+ k 2)))
|
|
(b4 (bytevector-u8-ref bytevector (+ k 3)))
|
|
(b5 (bytevector-u8-ref bytevector (+ k 4)))
|
|
(b6 (bytevector-u8-ref bytevector (+ k 5)))
|
|
(b7 (bytevector-u8-ref bytevector (+ k 6)))
|
|
(b8 (bytevector-u8-ref bytevector (+ k 7))))
|
|
(if (eq? endianness 'big)
|
|
(sign b1 b2 b3 b4 b5 b6 b7 b8)
|
|
(sign b8 b7 b6 b5 b4 b3 b2 b1))))
|
|
|
|
(define (bytevector-ieee-double-native-ref bytevector k)
|
|
(bytevector-ieee-double-ref bytevector k (native-endianness)))
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; writing floating point numbers
|
|
|
|
;; Underflow rounds down to zero as in IEEE-754, and overflow gets
|
|
;; written as +/- Infinity.
|
|
|
|
;; Break a real number down to a normalized mantissa and exponent.
|
|
;; Default base=2, mant-size=23 (52), exp-size=8 (11) for IEEE singles
|
|
;; (doubles).
|
|
;;
|
|
;; Note: This should never be used in practice, since it can be
|
|
;; implemented much faster in C. See decode-float in ChezScheme or
|
|
;; Gauche.
|
|
(define (call-with-mantissa&exponent num base mant-size exp-size proc)
|
|
(cond
|
|
((negative? num)
|
|
(call-with-mantissa&exponent (- num) base mant-size exp-size proc))
|
|
((zero? num) (proc 0 0))
|
|
(else
|
|
(let* ((bot (expt base mant-size))
|
|
(top (* base bot)))
|
|
(let loop ((n (inexact num)) (e 0))
|
|
(cond
|
|
((>= n top)
|
|
(loop (/ n base) (+ e 1)))
|
|
((< n bot)
|
|
(loop (* n base) (- e 1)))
|
|
(else
|
|
(proc (exact (round n)) e))))))))
|
|
|
|
(define (bytevector-ieee-single-set! bytevector k num endianness)
|
|
(define output
|
|
(if (eq? endianness 'big)
|
|
(lambda (b1 b2 b3 b4) (bytevector-u8-set-all! bytevector k b1 b2 b3 b4))
|
|
(lambda (b1 b2 b3 b4) (bytevector-u8-set-all! bytevector k b4 b3 b2 b1))))
|
|
(define (compute)
|
|
(call-with-mantissa&exponent num 2 23 8
|
|
(lambda (f e)
|
|
(let ((e0 (+ e 127 23)))
|
|
(cond
|
|
((negative? e0)
|
|
(let* ((f1 (exact (round (* f (expt 2 (- e0 1))))))
|
|
(b2 (bit-field f1 16 24)) ; mant:16-23
|
|
(b3 (bit-field f1 8 16)) ; mant:8-15
|
|
(b4 (bit-field f1 0 8))) ; mant:0-7
|
|
(output (if (negative? num) 128 0) b2 b3 b4)))
|
|
((> e0 255) ; infinity
|
|
(output (if (negative? num) 255 127) 128 0 0))
|
|
(else
|
|
(let* ((b0 (arithmetic-shift e0 -1))
|
|
(b1 (if (negative? num) (+ b0 128) b0)) ; sign + exp:1-7
|
|
(b2 (bitwise-ior
|
|
(if (odd? e0) 128 0) ; exp:0
|
|
(bit-field f 16 23))) ; + mant:16-23
|
|
(b3 (bit-field f 8 16)) ; mant:8-15
|
|
(b4 (bit-field f 0 8))) ; mant:0-7
|
|
(output b1 b2 b3 b4))))))))
|
|
(cond
|
|
((zero? num) (output 0 0 0 0))
|
|
((nan? num) (output #xff #xff #xff #xff))
|
|
(else (compute))))
|
|
|
|
(define (bytevector-ieee-single-native-set! bytevector k num)
|
|
(bytevector-ieee-single-set! bytevector k num (native-endianness)))
|
|
|
|
(define (bytevector-ieee-double-set! bytevector k num endianness)
|
|
(define output
|
|
(if (eq? endianness 'big)
|
|
(lambda (b1 b2 b3 b4 b5 b6 b7 b8)
|
|
(bytevector-u8-set-all! bytevector k b1 b2 b3 b4 b5 b6 b7 b8))
|
|
(lambda (b1 b2 b3 b4 b5 b6 b7 b8)
|
|
(bytevector-u8-set-all! bytevector k b8 b7 b6 b5 b4 b3 b2 b1))))
|
|
(define (compute)
|
|
(call-with-mantissa&exponent num 2 52 11
|
|
(lambda (f e)
|
|
(let ((e0 (+ e 1023 52)))
|
|
(cond
|
|
((negative? e0)
|
|
(let* ((f1 (exact (round (* f (expt 2 (- e0 1))))))
|
|
(b2 (bit-field f1 48 52))
|
|
(b3 (bit-field f1 40 48))
|
|
(b4 (bit-field f1 32 40))
|
|
(b5 (bit-field f1 24 32))
|
|
(b6 (bit-field f1 16 24))
|
|
(b7 (bit-field f1 8 16))
|
|
(b8 (bit-field f1 0 8)))
|
|
(output (if (negative? num) 128 0) b2 b3 b4 b5 b6 b7 b8)))
|
|
((> e0 4095) ; infinity
|
|
(output (if (negative? num) 255 127) 224 0 0 0 0 0 0))
|
|
(else
|
|
(let* ((b0 (bit-field e0 4 11))
|
|
(b1 (if (negative? num) (+ b0 128) b0))
|
|
(b2 (bitwise-ior (arithmetic-shift
|
|
(bit-field e0 0 4)
|
|
4)
|
|
(bit-field f 48 52)))
|
|
(b3 (bit-field f 40 48))
|
|
(b4 (bit-field f 32 40))
|
|
(b5 (bit-field f 24 32))
|
|
(b6 (bit-field f 16 24))
|
|
(b7 (bit-field f 8 16))
|
|
(b8 (bit-field f 0 8)))
|
|
(output b1 b2 b3 b4 b5 b6 b7 b8))))))))
|
|
(cond
|
|
((zero? num) (output 0 0 0 0 0 0 0 0))
|
|
((nan? num) (output #xff #xff #xff #xff #xff #xff #xff #xff))
|
|
(else (compute))))
|
|
|
|
(define (bytevector-ieee-double-native-set! bytevector k num)
|
|
(bytevector-ieee-double-set! bytevector k num (native-endianness)))
|
|
|
|
;; Local Variables:
|
|
;; eval: (put 'call-with-mantissa&exponent 'scheme-indent-function 4)
|
|
;; End:
|