mirror of
https://github.com/ashinn/chibi-scheme.git
synced 2025-05-19 05:39:18 +02:00
Naturally, fixed-width integer arithmetics can overflow. Chibi handles it pretty well in general, but one case was missing: it is negation of the minimal negative number that can be represented as a fixnum. That is, sexp_fx_neg() must not be applied to sexp_make_fixnum(SEXP_MIN_FIXNUM) because it overflows and returns an identical fixnum back. sexp_fx_neg() itself seems to be used right in the current code, but sexp_fx_abs()--which is defined in terms of sexp_fx_neg()--could be applied to the forbidden number when used to retrieve an unboxed value via the sexp_unbox_fixnum(sexp_fx_abs(x)) pattern. So I have added a separate macro that safely calculates unboxed absolute value of a fixnum, and replaced sexp_unbox_fixnum(sexp_fx_abs(x)) usages with it. Current implementation uses two-bit tag for fixnums, plus we need one bit for the sign, so fixnums have (machine word - 3) significant bits. Regression tests cover word sizes of 16, 32, 64, and 128 bits (for the sake of past- and future-proofness). sexp_bignum_expt() does not have a regression test because we need to check it with negative exponents like -2^29, so the base must be over at least 2^(2^29) for the differences to be visible. Fun fact: bignum representation of such number takes around 1/32 of the available user- space memory, which makes testing on anything except 32-bit systems unreasonable (4 TB of RAM anyone?)
263 lines
11 KiB
Scheme
263 lines
11 KiB
Scheme
|
|
;; these tests are only valid if chibi-scheme is compiled with full
|
|
;; numeric support (USE_BIGNUMS, USE_FLONUMS and USE_MATH)
|
|
|
|
(cond-expand
|
|
(modules (import (only (chibi test) test-begin test test-end)))
|
|
(else #f))
|
|
|
|
(test-begin "numbers")
|
|
|
|
(define (integer-neighborhoods x)
|
|
(list x (+ 1 x) (+ -1 x) (- x) (- 1 x) (- -1 x)))
|
|
|
|
(test '(536870912 536870913 536870911 -536870912 -536870911 -536870913)
|
|
(integer-neighborhoods (expt 2 29)))
|
|
|
|
(test '(1073741824 1073741825 1073741823 -1073741824 -1073741823 -1073741825)
|
|
(integer-neighborhoods (expt 2 30)))
|
|
|
|
(test '(2147483648 2147483649 2147483647 -2147483648 -2147483647 -2147483649)
|
|
(integer-neighborhoods (expt 2 31)))
|
|
|
|
(test '(4294967296 4294967297 4294967295 -4294967296 -4294967295 -4294967297)
|
|
(integer-neighborhoods (expt 2 32)))
|
|
|
|
(test '(4611686018427387904 4611686018427387905 4611686018427387903
|
|
-4611686018427387904 -4611686018427387903 -4611686018427387905)
|
|
(integer-neighborhoods (expt 2 62)))
|
|
|
|
(test '(9223372036854775808 9223372036854775809 9223372036854775807
|
|
-9223372036854775808 -9223372036854775807 -9223372036854775809)
|
|
(integer-neighborhoods (expt 2 63)))
|
|
|
|
(test '(18446744073709551616 18446744073709551617 18446744073709551615
|
|
-18446744073709551616 -18446744073709551615 -18446744073709551617)
|
|
(integer-neighborhoods (expt 2 64)))
|
|
|
|
(test '(85070591730234615865843651857942052864
|
|
85070591730234615865843651857942052865
|
|
85070591730234615865843651857942052863
|
|
-85070591730234615865843651857942052864
|
|
-85070591730234615865843651857942052863
|
|
-85070591730234615865843651857942052865)
|
|
(integer-neighborhoods (expt 2 126)))
|
|
|
|
(test '(170141183460469231731687303715884105728
|
|
170141183460469231731687303715884105729
|
|
170141183460469231731687303715884105727
|
|
-170141183460469231731687303715884105728
|
|
-170141183460469231731687303715884105727
|
|
-170141183460469231731687303715884105729)
|
|
(integer-neighborhoods (expt 2 127)))
|
|
|
|
(test '(340282366920938463463374607431768211456
|
|
340282366920938463463374607431768211457
|
|
340282366920938463463374607431768211455
|
|
-340282366920938463463374607431768211456
|
|
-340282366920938463463374607431768211455
|
|
-340282366920938463463374607431768211457)
|
|
(integer-neighborhoods (expt 2 128)))
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
(define (integer-arithmetic-combinations a b)
|
|
(list (+ a b) (- a b) (* a b) (quotient a b) (remainder a b)))
|
|
|
|
(define (sign-combinations a b)
|
|
(list (integer-arithmetic-combinations a b)
|
|
(integer-arithmetic-combinations (- a) b)
|
|
(integer-arithmetic-combinations a (- b))
|
|
(integer-arithmetic-combinations (- a) (- b))))
|
|
|
|
;; fix x fix
|
|
(test '((1 -1 0 0 0) (1 -1 0 0 0) (-1 1 0 0 0) (-1 1 0 0 0))
|
|
(sign-combinations 0 1))
|
|
(test '((2 0 1 1 0) (0 -2 -1 -1 0) (0 2 -1 -1 0) (-2 0 1 1 0))
|
|
(sign-combinations 1 1))
|
|
(test '((59 25 714 2 8) (-25 -59 -714 -2 -8)
|
|
(25 59 -714 -2 8) (-59 -25 714 2 -8))
|
|
(sign-combinations 42 17))
|
|
|
|
;; fix x big
|
|
(test '((4294967338 -4294967254 180388626432 0 42)
|
|
(4294967254 -4294967338 -180388626432 0 -42)
|
|
(-4294967254 4294967338 -180388626432 0 42)
|
|
(-4294967338 4294967254 180388626432 0 -42))
|
|
(sign-combinations 42 (expt 2 32)))
|
|
|
|
;; big x fix
|
|
(test '((4294967338 4294967254 180388626432 102261126 4)
|
|
(-4294967254 -4294967338 -180388626432 -102261126 -4)
|
|
(4294967254 4294967338 -180388626432 -102261126 4)
|
|
(-4294967338 -4294967254 180388626432 102261126 -4))
|
|
(sign-combinations (expt 2 32) 42))
|
|
|
|
;; big x bigger
|
|
(test '((12884901889 -4294967297 36893488151714070528 0 4294967296)
|
|
(4294967297 -12884901889 -36893488151714070528 0 -4294967296)
|
|
(-4294967297 12884901889 -36893488151714070528 0 4294967296)
|
|
(-12884901889 4294967297 36893488151714070528 0 -4294967296))
|
|
(sign-combinations (expt 2 32) (+ 1 (expt 2 33))))
|
|
|
|
(test '((18446744078004518913 -18446744069414584321 79228162514264337597838917632 0 4294967296)
|
|
(18446744069414584321 -18446744078004518913 -79228162514264337597838917632 0 -4294967296)
|
|
(-18446744069414584321 18446744078004518913 -79228162514264337597838917632 0 4294967296)
|
|
(-18446744078004518913 18446744069414584321 79228162514264337597838917632 0 -4294967296))
|
|
(sign-combinations (expt 2 32) (+ 1 (expt 2 64))))
|
|
|
|
;; bigger x big
|
|
(test '((12884901889 4294967297 36893488151714070528 2 1)
|
|
(-4294967297 -12884901889 -36893488151714070528 -2 -1)
|
|
(4294967297 12884901889 -36893488151714070528 -2 1)
|
|
(-12884901889 -4294967297 36893488151714070528 2 -1))
|
|
(sign-combinations (+ 1 (expt 2 33)) (expt 2 32)))
|
|
|
|
(test '((18446744078004518913 18446744069414584321 79228162514264337597838917632 4294967296 1)
|
|
(-18446744069414584321 -18446744078004518913 -79228162514264337597838917632 -4294967296 -1)
|
|
(18446744069414584321 18446744078004518913 -79228162514264337597838917632 -4294967296 1)
|
|
(-18446744078004518913 -18446744069414584321 79228162514264337597838917632 4294967296 -1))
|
|
(sign-combinations (+ 1 (expt 2 64)) (expt 2 32)))
|
|
|
|
(define M7 (- (expt 2 127) 1))
|
|
|
|
(test '((170141183460469231750134047789593657344
|
|
170141183460469231713240559642174554110
|
|
3138550867693340382088035895064302439764418281874191810559
|
|
9223372036854775807
|
|
9223372036854775808)
|
|
(-170141183460469231713240559642174554110
|
|
-170141183460469231750134047789593657344
|
|
-3138550867693340382088035895064302439764418281874191810559
|
|
-9223372036854775807
|
|
-9223372036854775808)
|
|
(170141183460469231713240559642174554110
|
|
170141183460469231750134047789593657344
|
|
-3138550867693340382088035895064302439764418281874191810559
|
|
-9223372036854775807
|
|
9223372036854775808)
|
|
(-170141183460469231750134047789593657344
|
|
-170141183460469231713240559642174554110
|
|
3138550867693340382088035895064302439764418281874191810559
|
|
9223372036854775807
|
|
-9223372036854775808))
|
|
(sign-combinations M7 (+ 1 (expt 2 64))))
|
|
|
|
;; fixnum-bignum boundaries (machine word - 1 bit for sign - 2 bits for tag)
|
|
|
|
(test 8191 (- -8191))
|
|
(test 8192 (- -8192))
|
|
(test 8193 (- -8193))
|
|
|
|
(test 536870911 (- -536870911))
|
|
(test 536870912 (- -536870912))
|
|
(test 536870913 (- -536870913))
|
|
|
|
(test 2305843009213693951 (- -2305843009213693951))
|
|
(test 2305843009213693952 (- -2305843009213693952))
|
|
(test 2305843009213693953 (- -2305843009213693953))
|
|
|
|
(test 42535295865117307932921825928971026431 (- -42535295865117307932921825928971026431))
|
|
(test 42535295865117307932921825928971026432 (- -42535295865117307932921825928971026432))
|
|
(test 42535295865117307932921825928971026433 (- -42535295865117307932921825928971026433))
|
|
|
|
(test '((536879104 -536862720 4398046511104 0 8192)
|
|
(536862720 -536879104 -4398046511104 0 -8192)
|
|
(-536862720 536879104 -4398046511104 0 8192)
|
|
(-536879104 536862720 4398046511104 0 -8192))
|
|
(sign-combinations (expt 2 13) (expt 2 29)))
|
|
|
|
(test '((536879104 536862720 4398046511104 65536 0)
|
|
(-536862720 -536879104 -4398046511104 -65536 0)
|
|
(536862720 536879104 -4398046511104 -65536 0)
|
|
(-536879104 -536862720 4398046511104 65536 0))
|
|
(sign-combinations (expt 2 29) (expt 2 13)))
|
|
|
|
(test '((2305843009750564864 -2305843008676823040 1237940039285380274899124224 0 536870912)
|
|
(2305843008676823040 -2305843009750564864 -1237940039285380274899124224 0 -536870912)
|
|
(-2305843008676823040 2305843009750564864 -1237940039285380274899124224 0 536870912)
|
|
(-2305843009750564864 2305843008676823040 1237940039285380274899124224 0 -536870912))
|
|
(sign-combinations (expt 2 29) (expt 2 61)))
|
|
|
|
(test '((2305843009750564864 2305843008676823040 1237940039285380274899124224 4294967296 0)
|
|
(-2305843008676823040 -2305843009750564864 -1237940039285380274899124224 -4294967296 0)
|
|
(2305843008676823040 2305843009750564864 -1237940039285380274899124224 -4294967296 0)
|
|
(-2305843009750564864 -2305843008676823040 1237940039285380274899124224 4294967296 0))
|
|
(sign-combinations (expt 2 61) (expt 2 29)))
|
|
|
|
(test '((42535295865117307935227668938184720384 -42535295865117307930615982919757332480
|
|
98079714615416886934934209737619787751599303819750539264 0 2305843009213693952)
|
|
(42535295865117307930615982919757332480 -42535295865117307935227668938184720384
|
|
-98079714615416886934934209737619787751599303819750539264 0 -2305843009213693952)
|
|
(-42535295865117307930615982919757332480 42535295865117307935227668938184720384
|
|
-98079714615416886934934209737619787751599303819750539264 0 2305843009213693952)
|
|
(-42535295865117307935227668938184720384 42535295865117307930615982919757332480
|
|
98079714615416886934934209737619787751599303819750539264 0 -2305843009213693952))
|
|
(sign-combinations (expt 2 61) (expt 2 125)))
|
|
|
|
(test '((42535295865117307935227668938184720384 42535295865117307930615982919757332480
|
|
98079714615416886934934209737619787751599303819750539264 18446744073709551616 0)
|
|
(-42535295865117307930615982919757332480 -42535295865117307935227668938184720384
|
|
-98079714615416886934934209737619787751599303819750539264 -18446744073709551616 0)
|
|
(42535295865117307930615982919757332480 42535295865117307935227668938184720384
|
|
-98079714615416886934934209737619787751599303819750539264 -18446744073709551616 0)
|
|
(-42535295865117307935227668938184720384 -42535295865117307930615982919757332480
|
|
98079714615416886934934209737619787751599303819750539264 18446744073709551616 0))
|
|
(sign-combinations (expt 2 125) (expt 2 61)))
|
|
|
|
(test #f (< +nan.0 +nan.0))
|
|
(test #f (<= +nan.0 +nan.0))
|
|
(test #f (= +nan.0 +nan.0))
|
|
(test #f (>= +nan.0 +nan.0))
|
|
(test #f (> +nan.0 +nan.0))
|
|
|
|
(test #f (< +inf.0 +inf.0))
|
|
(test #t (<= +inf.0 +inf.0))
|
|
(test #t (= +inf.0 +inf.0))
|
|
(test #t (>= +inf.0 +inf.0))
|
|
(test #f (> +inf.0 +inf.0))
|
|
|
|
(test #f (< -inf.0 -inf.0))
|
|
(test #t (<= -inf.0 -inf.0))
|
|
(test #t (= -inf.0 -inf.0))
|
|
(test #t (>= -inf.0 -inf.0))
|
|
(test #f (> -inf.0 -inf.0))
|
|
|
|
(test #t (< -inf.0 +inf.0))
|
|
(test #t (<= -inf.0 +inf.0))
|
|
(test #f (= -inf.0 +inf.0))
|
|
(test #f (>= -inf.0 +inf.0))
|
|
(test #f (> -inf.0 +inf.0))
|
|
|
|
(test 88962710306127702866241727433142015
|
|
(string->number "#x00112233445566778899aabbccddeeff"))
|
|
|
|
(test (expt 10 154) (sqrt (expt 10 308)))
|
|
|
|
(test 36893488147419103231
|
|
(- 340282366920938463463374607431768211456
|
|
340282366920938463426481119284349108225))
|
|
|
|
(cond-expand
|
|
(ratios
|
|
(test #t (< 1/2 1.0))
|
|
(test #t (< 1.0 3/2))
|
|
(test #t (< 1/2 1.5))
|
|
(test #t (< 1/2 2.0))
|
|
(test 1.0 (max 1/2 1.0))
|
|
(test 18446744073709551617 (numerator (/ 18446744073709551617 2)))
|
|
(test "18446744073709551617/2" (number->string (/ 18446744073709551617 2)))
|
|
(let ((a 1000000000000000000000000000000000000000)
|
|
(b 31622776601683794000))
|
|
(test 31622776601683792639 (quotient a b))
|
|
(test 30922992657207634000 (remainder a b)))
|
|
(let ((g 18446744073709551616/6148914691236517205))
|
|
(test 36893488147419103231/113427455640312821148309287786019553280
|
|
(- g (/ 9 g))))
|
|
(let ((r (/ (expt 2 61) 3)))
|
|
(test 0 (- r r))
|
|
(test 2305843009213693952/3 r)))
|
|
(else
|
|
#f))
|
|
|
|
(test-end)
|